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RESUMO 

 

 

A presença de atrasos em diversos casos reais de sistemas faz com que a 

teoria de controle se torne não trivial, requerendo técnicas específicas de 

análise e comando. A comunidade que estuda o comportamento de sistemas 

com atraso se interessa pela determinação da estabilidade desses sistemas, 

a qual pode ser determinada pela localização de seus zeros e pólos. Alguns 

potentes softwares de cálculo numérico existem; entretanto, não contam 

com rotinas especializadas e aproximações a sistemas de ordens inferiores, 

que devem ser realizadas antes de se aplicar às rotinas disponíveis. Parte 

deste trabalho visa o estudo da determinação de raízes instáveis pela 

aproximação de funções transcendentes, para posterior estudo da 

estabilidade de sistemas com atraso. Outra parte consiste no 

desenvolvimento de um programa flexível de cálculo das raízes, para servir 

de ferramenta ao estudo da estabilidade de um sistema com atraso 

qualquer.   

 

Palavras-chave: Controle, sistemas com atraso, estabilidade, aproximações 

de funções transcendentes. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

ABSTRACT 

 

 

Delays occur in diversified types of real systems, so that the control theory 

becomes not trivial, requiring specific techniques for the analysis and 

command. The delay-community, which studies the behaviour of delay-

systems, is interested in determining these systems’ stability. This stability 

can be determined by the placement of zeros and poles. Some powerful 

softwares of numerical computing exist. However, they do not contain 

specialized routines and approximations to low-order systems should be 

done before using the available routines. Part of this work intends to study 

the determination of unstable roots by approximating transcendental 

functions, for further study of the delay-systems’ stability. Another part of this 

work consists in developing a flexible program to compute roots, in order to 

serve as a tool for the study of the stability of any delayed system. 

 

Keywords: Control, delay-systems, stability, transcendental functions. 
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1  Introdução 

  

 Diversos sistemas reais apresentam evolução dependente do estado atual, assim como dos 

estados precedentes. A presença de transporte de matéria, de energia ou de informação, fenômeno 

que se constitui como uma fonte de atraso, leva a este comportamento. Estes sistemas são 

modelados com o uso de equações diferenciais com atrasos, as quais apresentam uma dimensão real 

do estado infinito. Dessa forma, a presença de atrasos faz com que a teoria de controle se torne não 

trivial, requerendo técnicas específicas de análise e comando.  

A comunidade que estuda o comportamento desses sistemas se interessa pela determinação 

da estabilidade dos mesmos, através da determinação da localização de seus zeros e pólos. Alguns 

potentes softwares de cálculo científico, como Matlab e Scilab, estão disponíveis. Entretanto, não 

existem rotinas adaptadas aos sistemas supracitados. Devem-se incorporar aproximações de 

sistemas lineares invariantes com o tempo de dimensão infinita por sistemas de dimensão finita de 

ordens inferiores, para se aplicar às rotinas disponíveis. 

Este trabalho tem como metodologia a revisão da literatura disponível sobre sistemas com 

atraso, bem como o estudo da determinação de raízes instáveis pela aproximação de funções 

transcendentes, para a obtenção de zeros e pólos, os quais servirão ao estudo da estabilidade desses 

sistemas. O resultado deste estudo será utilizado no desenvolvimento de um programa flexível de 

cálculo de raízes para servir de ferramenta ao estudo da estabilidade de um sistema com atraso 

qualquer. 

Dessa forma, este trabalho tem como principal motivação atender às necessidades de uma 

comunidade de pesquisadores especializados no estudo destes sistemas, através da integração de 

conhecimentos teóricos a uma aplicação prática flexível. 
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2  Cenário  

 

 Inicialmente, as pesquisas conduzidas sobre este tema eram de natureza puramente 

tecnológica, mas os componentes metodológicos rapidamente dominaram a cena. A razão essencial 

foi, acima de tudo, a necessidade da formalização de problemas de base, tais como a estabilização e 

o recurso aos atrasos distribuídos, seguidos pela necessidade de se desenvolver módulos de 

ferramentas específicas, passo incontornável a toda e qualquer implementação de aplicação. 

 Esse importante eixo de pesquisa foi desenvolvido desde o início dos anos 90, motivado a 

princípio pelas demandas do setor sócio-econômico e preocupava-se com a estrutura de sistemas 

lineares com atraso. Esses sistemas podem representar fenômenos que intervêm em numerosos 

processos, tais como as telecomunicações, os transportes de energia ou de informação. São 

estudados em diversos programas de pesquisa internacionais, como no National Science 

Foundation (NSF) e no Centre national de la recherche scientifique (CNRS). Entre eles, o Institut 

national de la recherche em informatique et automatique (INRIA) está fortemente presente no 

desenvolvimento da “estrutura” e “estabilização”. 

Para a modelagem e análise de sistemas com atrasos, diferentes propriedades matemáticas 

são utilizadas. Algumas ferramentas matemáticas, como o uso do anel, denominado Épsilon, para a 

localização de pólos para sistemas de equações lineares, já foram apresentadas, mas as principais 

conseqüências para o comando e estabilização restam ainda como objeto de estudo. 

Alguns fenômenos ainda não foram dominados, nem explicados. Por exemplo, diferentes 

esquemas de discretização de integrais mostraram não ser equivalentes em relação à conservação da 

estabilidade. É necessário encontrar uma aproximação que não introduza instabilidades estruturais. 

Algumas configurações já foram exibidas, entretanto, na globalidade, existem problemas que 

continuam em aberto, cuja temática é atualmente abordada em trabalhos.  

As leis de comando que operam na localização dos pólos são complexas, definidas como 

equações integrais implícitas. Diversos métodos foram propostos para se avaliar a margem de 

estabilidade sobre o atraso. Ao senso entrada limitada - saída limitada ([18]), as noções de 

estabilidade e estabilização se formulam no contexto geral da classe de Callier-Desoer e de funções 

de transferência ∞H . Continuou-se a estudar o problema com a realização de uma escala constituída 

por diferentes tipos de sistemas com atraso. 

Atualmente, os formalismos são bem conhecidos e são utilizados pela comunidade de estudo 
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em todo o mundo. As pesquisas se voltam em direção à implementação desses métodos. Isso 

conduz, de um lado, ao estudo de dificuldades numéricas que foram sublinhadas por vários autores 

e, de outro lado, ao aprofundamento da teoria, para levar em consideração a robusteza, resolver 

questões específicas, generalizar o método para classes mais amplas de sistemas dinâmicos ou, ao 

contrário, especializá-la para importantes modelos simples em prática. 

Alguns algoritmos desenvolvidos já foram implementados em ferramentas de cálculo 

simbólico, como CoCoA e MapleV, permitindo, assim, abordar os aspectos da estabilidade. São 

ferramentas metodológicas que não existiam antes e que atualmente são continuados por alguns 

pesquisadores italianos das Universidades de Ancona e de Roma.  

Entretanto, para se continuar o estudo da estabilidade de sistemas com atraso, existe uma 

necessidade de se incluir os diversos formalismos e algoritmos desenvolvidos, utilizando da 

manipulação simbólica como meio para se resolver um sistema específico. A satisfação a esta 

necessidade será o objeto deste trabalho.  
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3  Discussão do projeto 

 

 Este projeto foi dividido nas seguintes etapas: 

a. Levantamento de dados; 

b. Revisão bibliográfica; 

c. Implementação; 

d. Testes e Correções; 

e. Confecção de documentação. 

 

Ajudando a constituir o cronograma de atividades, estas etapas, previstas para uma 

realização lógica, atendem, primeiramente, a uma boa definição do problema, dado pelo 

Levantamento de dados e pelas bases lançadas com a Revisão bibliográfica. Em seguida, parte para 

a implementação do programa, para a verificação através de testes e correções e para a confecção da 

documentação. 

Atividades a serem realizadas para o levantamento de dados: 

a.1 A determinação da necessidade da comunidade de pesquisa, a partir do levantamento dos 

interesses de uma pesquisadora do grupo; 

a.2 A busca por um professor interessado, para assumir a orientação junto à Escola 

Politécnica da USP; 

a.3 Levantamento de referências bibliográficas. 

 

Atividades previstas para a Revisão bibliográfica: 

b.1 Leitura e análise de referências apontadas no levantamento de dados; 

b.2 Organização de informações de modo a favorecer a operacionalização pelo 

desenvolvimento do programa.  

 

Divisão das atividades para a implementação: 

c.1 Determinação de funcionalidades desejadas para a ferramenta desenvolvida; 

c.2 Determinação do software a ser utilizado para a implementação do programa; 

c.3 Determinação de procedimento realizado no programa; e  

c.4 Redação das rotinas que compõem o programa. 
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Descrição de atividades contidas na verificação do programa: 

d.1 Teste com exemplo estudado na literatura 

d.2 Comparação com resultados fornecidos por outros softwares livres 

d.3 Determinação de limitações do programa 

 

Nesta etapa, as correções são efetuadas pontualmente, conforme se identifiquem as 

necessidades de modificar algo ou bugs no programa.  

Por último, visa à confecção de documentação necessária para a disciplina PMR2550, 

através da determinação de modelos a serem utilizados, na forma de um relatório final e de um 

artigo, para descrição de atividades realizadas no período.   
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4 Atividades realizadas 

 

 Grande dificuldade foi colocada no Levantamento de dados, desde o início do projeto, o que 

necessitou a consagração de grande parte do tempo a sua execução. Após a realização da primeira 

versão da ferramenta, três possíveis desdobramentos do trabalho foram discutidos com a 

pesquisadora interessada no tema do trabalho. Entretanto, as alterações foram balanceadas 

internamente com as outras atividades previstas para o período. Todas as atividades previstas foram 

realizadas.  

 Através do estudo bibliográfico, puderam-se verificar as formas de sistemas com atraso. 

Verificou-se, também, que não existem rotinas adequadas disponíveis nos softwares Matlab e Scilab 

para o cálculo dos pólos, o que justifica a motivação inicial de se incorporar aproximações de 

dimensão finita para sistemas de dimensão infinita, desenvolvendo-se, em seguida, uma ferramenta 

que execute essas aproximações, para se utilizar as rotinas disponíveis. Foi possível, também, a 

derivação de equações, apoiada sobre a extensa bibliografia, as quais são utilizadas no programa. 

Mesmo que todos os pólos possam ser identificados, a preocupação se volta somente à localização 

de pólos instáveis para a determinação da estabilidade do sistema. 

 A seguir, é apresentada a abordagem teórica, que permitiu a derivação de condições e 

expressões utilizadas no cálculo dos zeros, assim como a definição de funcionalidades a serem 

apresentadas pelo programa. Apresenta-se, também, a rotina implementada pelo programa escrito 

em código Matlab. Finalmente, apresentam-se os resultados dos testes realizados sobre um exemplo 

fornecido pela literatura e com resultados de outros softwares livres. 

 



 

 

 

7 

 

5  Abordagem teórica  

 

5.1 Sistemas com atraso 

 

5.1.1 Generalidades 

  

Numerosos sistemas são modelados por equações diferenciais com atrasos (ver [2], [14], 

[13] para numerosos exemplos): a evolução do processo não depende somente do estado presente, 

mas também dos estados anteriores. Esses sistemas, cuja dimensão real do estado é infinita, 

requerem técnicas específicas de análise e comando (ver [1], [13], [16], [4] e [7]). 

Consideram-se aqui os sistemas lineares que têm um número finito de atrasos (discretos 

positivos) sobre o estado, a entrada e a saída, e que são descritos pelas equações diferenciais 

lineares da forma 

( )
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 A função de transferência G de (S) é uma função transcendente dada por 
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que pode ser reescrita como  
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com 
21 1010 0,0 nn βββγγγ <<≤<<= KK , ip sendo polinômios de grau iδ , tal que 0δδ ≤i  para 

todo 0≠i , e iq  sendo polinômios de grau 0δ<id  para todos os i  (sistema próprio). 

 Os sistemas com atraso se dividem em duas classes: 
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- Os sistemas de tipo retardado: 0δδ <i para todo 0≠i . Essa classe de sistemas foi 

analisada pela primeira vez por Bellman e Cooke [2]. Eles mostraram que esses 

sistemas possuem um número finito de pólos ( )ns  no semi-plano direito. Os pólos ( )ns  

satisfazem −∞→nsRe ; 

- Sistemas do tipo neutro: 0δδ =i para ao menos um 0≠i . Os pólos se localizam em 

uma banda centrada em torno do eixo imaginário. 

Os atrasos que são todos múltiplos de um mesmo inteiro são chamados de atrasos 

comensuráveis. Os outros atrasos são chamados de atrasos gerais. Para os sistemas do tipo neutro, 

trabalha-se com retardos do tipo comensurável, uma vez que, no caso geral, o comportamento 

assintótico das cadeias de pólos não é sempre determinável.  

 

 

5.1.2 Estabilidade de sistemas com atraso 

 

Para o caso geral de sistemas do tipo (1), aos quais se adiciona as condições iniciais 

( ) nRxx ∈= 000  e 0xx =  sobre [ ]0,T− , dado T o maior dos atrasos físicos, ou seja, 

[ ] [ ]





=

∈∈
i

ki
i

ni
tT

,0,0
max,maxmax µ , diferentes noções de estabilidade são consideradas, dado que se tem uma 

abordagem temporal ou entrada-saída (em freqüência) do problema. 

 O sistema é dito assintoticamente estável se 

( ) ( ) .0lim,0,),( 2
000 =−×∈∀

+∞→
n

Rt

n txTLRxx  (5) 

  

O sistema é dito exponencialmente estável se existe 0≥M  e 0>ω  tais que 

( ) ( ) ( )2000
2

000 ,0,0,),(
L

t

R

n xxMetxtTLRxx n +≤≥∀−×∈∀ −ω . (6) 

  

O sistema é dito ∞H -estável se 

.∞<
∞H

G  (7) 

 Se o sistema for ∞H -estável, toda entrada u  no 2L  fornece uma saída no 2L . Os sistemas 

com atraso de tipo retardado ∞H -estável são se e somente se eles não apresentam pólos no 
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{ }0Re ≥s  (essa última condição sempre é necessária, mas raramente suficiente para um sistema 

qualquer). Tem-se, portanto, nesse caso, equivalência entre estabilidade assintótica, estabilidade 

∞H  e estabilidade exponencial. Para sistemas de tipo neutro, a estabilidade exponencial implica a 

estabilidade ∞H . 

 Tem-se a estabilidade em malha fechada, mostrada na figura 1, se as funções de 

transferência ( ) ( ) ( ) 111 , −−−
+++ PCICePCIPPCI são em ∞H . No âmbito desse estudo, interessa-

se pela estabilidade ∞H . 

 

Figura 1: Malha fechada padrão. 

 

 Uma característica desses sistemas é que eles têm um número infinito de pólos, cuja 

localização depende continuamente dos atrasos (unicamente para valores estritamente positivos de 

atrasos no caso dos sistemas do tipo neutro). 

 O método de Walton e Marshall (ver [10] e [6]) pode ser utilizado para concluir sobre a 

presença de pólos instáveis de sistemas, cuja função de transferência tem um denominador do tipo 

( ) ( ) ( ) shesCsAhsF −+=, . Ele permite determinar os valores dos atrasos, que desestabilizam o 

sistema e, então, que eventualmente o re-estabilizam etc. O procedimento consiste em 3 etapas: 

1. Análise da estabilidade para 0=h , ou seja, determinar o número de zeros no semi-

plano direito do sistema sem atrasos, ( )0,sF ; 

2. Análise dos h  positivos infinitamente pequenos e localização de novas raízes (em 

número infinito), que aparecem no plano complexo; 

3. Localização dos h  positivos para os quais existem zeros da função ( )hsF , , que se 

encontram sobre o eixo imaginário.  

Nesse caso, procuram-se os valores de h  e ω  tal que ( ) 0, =hiF ω , e se continua 

determinando se esses zeros tocam no eixo ou se eles o cruzam. Continua-se estudando o 

movimento dos zeros, de modo a se determinar as regiões de instabilidade, ou seja, quando os zeros 

não se encontram todos no semi-plano esquerdo aberto.  
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Determinam-se os pontos potenciais, cruzando o eixo imaginário e analisando o polinômio 

( ) ( ) ( ) ( ) ( )ωωωωω iCiCiAiAW −−−=2 , de mesmo grau que ( )sA . Quando não se tem raízes 

positivas de ( ) 02 =ωW , não existe valor de h  para o qual ( ) 0, =hiF ω , e, então, não existe 

mudança de estabilidade. Para todo 0≠ω  que satisfaz ( ) 02 =ωW , existe um h  real positivo tal 

que ( ) 0, =hiF ω  dado por  

( )
( )

( )
.Imsin,Recos








=







−=

ω

ω
ω

ω

ω
ω

i

iA
h

iC

iA
h  

(8) 

  

Tem-se, portanto, que se ( )ω0h  designa o menor valor de h , para um valor particular de ω , 

tem-se um número infinito de valores de h  que satisfazem ( ) 02 =ωW , para cada ω , dados por 

( ) K,2,1,0,
2

0 =+= q
q

hh
ω

π
ω  

(9) 

  

O caso de sistemas do tipo neutro é mais complexo e será introduzido na subseção seguinte. 

 

 

5.1.3 Sistemas com atraso do tipo neutro 

 

Encontra-se na literatura ([5]) subclasses de sistemas neutros: 

 

I. Somente um atraso no denominador: 

 

Quando (3) é representado por  

( )
( )

( ) ( )
,

0
10

0
s

espsp

sq
sG

γ−+
=  

(10) 

seja o real não nulo 
( )
( )sp

sp
s

1

0lim
∞→

=α , encontram-se os seguintes casos: 

a. 1<α , para o qual G(s) tem um número infinito de pólos instáveis, assintóticos a uma 

linha vertical 
h

s
α

logRe −≈  no semi-plano direito, e então G(s) não pode ser ( )∞∞ CH ; 
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b. 1>α , para o qual os pólos de grande módulo de G(s) são assintóticos a uma linha 

vertical estritamente no semi-plano esquerdo e, então, G(s) tem um número finito de 

pólos instáveis, e se ela não tem nenhum, então G(s) é ∞H ; 

c. 1=α , para o qual os pólos de G(s) são assintóticos ao eixo imaginário. 

 

No caso que 1=α , supondo 

( )
( )









+++=

32
1

0 1

s
O

sssp

sp γβ
α  para ∞→s  

(11) 

para βα , e γ  constantes, o sistema apresenta o seguinte comportamento: 

a. Se 
2

2β

α

γ
> , o sistema tem um número infinito de pólos instáveis; 

b. Se 
2

2β

α

γ
< , o sistema tem um número infinito de pólos estáveis. Ele não pode ter um 

número finito de pólos instáveis, e se ele não tem nenhum, então G(s) é ∞H  se e 

somente se ( ) ( ) 2degdeg 00 +≥ qp ; 

c. Se 
2

2β

α

γ
= , a condição ( ) ( ) 2degdeg 00 +≥ qp  continua necessária à estabilidade do 

sistema. 

 

II. Caso geral 

 

Para o caso de vários atrasos, (3), para ( )( ) msp =0deg , reagrupam-se os coeficientes do 

denominador em ms , tendo o polinômio Tsm

n

Tsmm nepepp
−− +++ K1

10 . Efetuando uma mudança de 

variáveis ( Xe T =− ), se a função não tem zeros em 0Re ≥s  (equivalente ao fato que X não tenha 

pólos no circulo unitário), então G(s) tem um número finito de pólos instáveis. 

 

 

5.2 Fatoração coprima e fatores de Bézout para sistemas com atraso 

 

Dado (3) e (4), para sistemas do tipo retardado, existe uma função racional r(s), tal que 
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( )
( )

( )
( ) 










sr

sh

sr

sh 12 , é uma fatoração coprima de G sobre ∞H  (veja introdução em [17]). No caso que 

( )sh1  e ( )sh2  não contenham mais que 0δ  zeros instáveis comuns, então r(s) pode ser tomado como 

um polinômio, como ( ) ( ) 01 δ
+= ssr . Isso também é válido para sistemas neutros que têm um 

número finito de pólos em { }as −>Re , onde 0>a . 

A aproximação pela fatoração coprima dos sistemas com atraso é uma boa aproximação 

segundo ∞H (ver Corolário 5.3 de [15]). 

 

 

5.3 Aproximações de sistemas com atrasos do tipo “Dead-time” 

 

O operador atraso é um operador de decalagem fundamental em 2H , designado por hS  e 

definido como ( )( ) ( ) 2, HfsfesfS hs

h ∈= − . Em [12], encontram-se os operadores de Kautz, 

Laguerre e Padé-2. Utiliza-se a aproximação de dimensão finita Padé-2, a qual é uma decalagem 

múltipla do tipo Kautz de multiplicidade 2n, dada por 

( )
22

2

,

23

1

2
1

23

1

2
1

Hff

n

hs

n

hs

n

hs

n

hs

fS

n

n

P ∈





























++









+−

= , 

(12) 

 

Seja o sistema com atrasos do tipo “dead-time” ( )sResG hs−=)( , onde 0>h  e ( ) 0≠sR  é 

uma função de transferência racional estável e estritamente própria com grau relativo m, [12] dá 

( ) ( )






















=− −

−

∞

45

4

,max nOnORSG

m

n

P . 
(13) 

 

Padé-2 apresenta, então, uma aproximação ∞H  de boa ordem (em comparação a uma 

aproximação racional de ordem ( )mnO − ) e de fácil implementação.  

 O teorema 4.2 (ver [15]) fornece os erros da aproximação dos pólos. Supondo que 0)( =aG , 

onde G é analítico com MsG ≤)( para Ras ≤− , e que )(aG m é a primeira derivada que não se 
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anula em a, e que 0>β e R<< δ0 , são tais que 

( )
( )( )

( )δ

δδ
β

−
−<≤−

+

∞ RR

M

m

aE
RSG

mmm

k

P

1

!
. 

(14) 

 

( )RS k

P tem, portanto, m zeros mkk aa ,1, ,,K com δ<− aa ik , para cada i. 
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6 Definição da solução 

 

6.1 Definição das funcionalidades 

 

As qualidades definidas como essenciais, durante o desenvolvimento do programa, são a 

portabilidade, a flexibilidade, a facilidade de utilização e a validade dos resultados. 

Para assegurar a portabilidade, todo o programa foi escrito em código Matlab, escolhido em 

detrimento do Scilab, pela maior riqueza das rotinas de interface.  

Para a facilidade de utilização, de um lado, pensou-se em um programa user friendly. Por essa 

razão, foi introduzida uma interface intuitiva, convivial e ricamente comentada, que guia o usuário 

através da listagem de mensagens, que ilustram a natureza do sistema. De outro lado, para a 

facilidade à entrada de dados e para a recuperação de resultados de uma instância do programa, 

integrou-se a leitura e escrita em um arquivo texto, results. Esse arquivo mantém os dados – atrasos 

iγ  e iβ , polinômios ( )spi  e ( )sqi , o parâmetro ε  e as normas ∞H  das aproximações 
( )

( ) 01
1

δ
+s

sh
e 

( )
( ) 01

2
δ

+s

sh
, assim como os pólos instáveis – de uma instância anterior do programa, utilizados na 

próxima instância.  

Para a flexibilidade, foi determinado que o usuário tivesse a liberdade de entrar em qualquer 

sistema do tipo (4), desde que com um número finito de iγ , iβ , e de graus de ( )spi  e ( )sqi . 

Também, escolheu-se o parâmetro ε , o qual é utilizado como parâmetro de parada aos cálculos de 

convergência feitos durante todo o programa. Dado ix  o valor de uma variável x  na iteração i ,  

.1 ε<− −ii xx  (15) 

 

 Finalmente, para a validade dos resultados obtidos, trabalha-se com o caso onde existe 

somente um número finito de pólos instáveis, pois se utilizam aproximações de dimensão finita para 

aproximar os zeros instáveis de (3). Nesses casos, a execução do programa é interrompida e o 

motivo é exposto ao usuário. Por sinal, não existe literatura disponível sobre a dinâmica da 

localização de todos os pólos possíveis, portanto, aplicou-se esse procedimento em todos os casos 

de cadeias infinitas de pólos instáveis.  
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 Além disso, devido à perda de precisão de Matlab, à medida que se aumenta a ordem dos 

polinômios aproximados para a convergência da aproximação dos pólos instáveis, insere-se o 

cálculo da norma ∞H  da aproximação obtida como parâmetro de parada, assim como para a 

informação do usuário quanto à qualidade da aproximação utilizada.  

 

 

6.2 Rotina 

 

Sistemas de dimensão infinita do tipo (3) são aproximados por sistemas de dimensão finita de 

ordem inferior. A aproximação ótima para esses sistemas, segundo ∞H , é a aproximação Padé-2, 

apresentada na seção 6.3, a qual fornece um erro máximo dado por (13). 

Pode-se aplicar aos sistemas do tipo “dead-time”, ( )sRe sh− , onde ( )sR  é estritamente próprio. 

Aproximam-se, dessa forma, os polinômios ( )sh1  e ( )sh2 , utilizando a aproximação de fatores 

coprimos (seção 6.2), com ( ) 1deg,degmax 000 += qpδ . Dessa forma, cada termo s

pi
ieR

γ− e s

qi
ieR

β−  

é do tipo “dead-time”, com 
( )

( ) 01 δ
+

=
s

sp
R i

pi e 
( )

( ) 01 δ
+

=
s

sq
R i

qi estritamente próprios. Sejam 
( )

( ) 01
1

δ
+s

sh
e 

( )
( ) 01

2
δ

+s

sh
 respectivamente D e N, reescrevem-se (3) como  

( ) .
D

N
sG =  

(16) 

 

Aplicando a aproximação Padé-2 sobre os sistemas do tipo “dead-time” de (16), obtém-se  

( ) ,
k

k

D

N
sG =  

(17) 

que é a aproximação ótima de dimensão finita, para o caso que se tem um número finito de pólos 

instáveis. Pode-se, dessa forma, utilizar as rotinas disponíveis em Matlab e Scilab para os sistemas 

do tipo (17). 

 Analisam-se as raízes do sistema e a norma ∞H  para cada n utilizado na aproximação Padé-

2. Calculam-se as raízes de kN e kD , para o caso em que não se prevê, na literatura, uma situação 

com número infinito de raízes. Para o kN , quando se tem um número infinito de raízes, aconselha-
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se ao usuário efetuar o cálculo desses zeros à mão, enquanto se continua com o cálculo das raízes de 

kD . Esse procedimento é encorajado, de forma a evitar raízes comuns entre o numerador e o 

denominador, uma vez que o sistema pode apresentar uma dinâmica não prevista na literatura. 

 Apresenta-se, aqui, somente o procedimento para D  e 
kD , pois o mesmo procedimento é 

utilizado para N  e kN . Desse modo, calculam-se as raízes de kD  para a iteração n . Os cálculos são 

interrompidos uma vez que se verifica que a norma relativa (18) entre duas iterações consecutivas 

ou a diferença máxima entre as raízes (19) é inferior à ε , dado k  o número de raízes. 

ε<
−

∞

∞

H

Hk

D

DD
 

(18) 

ε<− − knkn
k

xx ,1,max  (19) 

 

O procedimento ideal é de parar pela convergência da norma ∞H , que contabiliza a 

convergência da aproximação em todo o semi-plano direito. Entretanto, o critério de convergência 

dos pólos é, também, adequado, pois se tem uma interdependência entre as localizações dos pólos e 

a aproximação ótima, segundo ∞H  (veja seção 6.3, teorema 4.2 de [15]). 

 

 

6.3 Descrição do programa 

 

O programa foi estruturado em uma organização recursiva, para obter benefícios da semelhança 

entre o denominador e o numerador, quanto à entrada de dados e ao seu tratamento na leitura e 

escrita no arquivo results, a aproximação por Padé-2 e a fatoração coprima. O programa apresenta 

uma rotina principal recursiva, que faz a interface gráfica e a sincronização entre as diversas partes 

do programa.  

A partir da inicialização, tem-se a leitura dos dados da iteração anterior, estocados no arquivo 

results. O programa segue pedindo valores utilizados na iteração presente. Começa-se com o pedido 

de épsilon, seguido da inicialização do denominador ( )sh2  pela entrada dos atrasos iγ  e dos 

polinômios ( )spi . Verifica-se a presença de 00 =γ , sem a qual se reinicializa o procedimento. Em 

seguida, realiza-se a similar inicialização do numerador, pela entrada dos atrasos iβ  e dos 
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polinômios ( )sqi . 

Após a entrada completa de dados do sistema na inicialização, segue-se com a rotina calcul.m, 

onde se começa a identificação do tipo de sistema, entre sistemas do tipo retardado ou sistema do 

tipo neutro. O programa é, dessa forma, subdividido em dois grandes grupos, o que é utilizado para 

efetuar a triagem de casos particulares, já estudados na literatura disponível (veja capítulo 6). 

Definem-se, assim, os intervalos para os quais o programa agirá – funções de transferência com um 

número finito de pólos instáveis.  

Para sistemas do tipo neutro, o programa é guiado pelas considerações da seção 6.1.3. Assim, 

distingue-se a presença de um ou vários atrasos e realiza-se o cálculo de βα ,  e γ  (pela rotina 

calcul-beta-gamma.m). Sempre expondo a situação do sistema ao usuário, o programa é 

reinicializado quando se encontra no caso de infinitas raízes instáveis, ou quando não se tem 

exponencial no denominador ou, ainda, se o sistema não é próprio.  

Realiza-se, enfim, o cálculo dos pólos, o que é feito seguindo o procedimento descrito na seção 

7.2. O procedimento, descrito a seguir, é executado sempre para o denominador e é, também, 

executado para o numerador, quando este não apresenta infinitas raízes instáveis.  

O parâmetro 0δ da fatoração coprima é encontrado e segue-se com a aproximação Padé-2 dos 

sistemas do tipo (16), com ajuda da função approx-pade.m. Encontra-se o grau n da aproximação, 

tendo em conta a convergência, seja das raízes, seja da norma relativa, conforme descrito na seção 

7.2. No caso em que se calculam as raízes de kN , interrompem-se os cálculos quando kN  e 

kD apresentam raízes comuns ou muito próximas (de distância inferior a ε ), uma vez que não se 

pode prever o comportamento do sistema. 

Existem casos de infinitas raízes instáveis, não previstos na literatura disponível. Nesses casos, 

a aproximação por raízes ou pela norma relativa não converge. De fato, quando se aumenta o grau 

n, faz-se convergir às raízes de baixo módulo absoluto. Entretanto, nem todas as raízes obedecem à 

natureza assintótica vertical da localização esperada.  

Matlab apresenta alguns erros também, uma vez que se trabalha com graus superiores a 65, 

quando se utiliza um único atraso igual a 1. Esse valor diminui quando se aumenta a magnitude e o 

número de atrasos presentes. Desse modo, limita-se o loop de convergência quando 50>n  e 

adotam-se raízes com módulo absoluto inferior a 100.  

Algumas rotinas auxiliares são utilizadas para o tratamento e apresentação de polinômios, para 

o fornecimento da aproximação Padé-2, uma vez que a função disponível em Matlab não é 
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programada para qualquer que seja a entrada n e h. Também, escreveu-se uma rotina que realiza a 

manipulação e transformação de variáveis do tipo ‘tf’ em uma variável do tipo ‘sym’. A rotina 

csort.m foi obtida no site oficial de Matlab e efetua a organização de vetores por um parâmetro 

escolhido (‘real’, ‘complexo’ ou ‘abs’).  

A rotina norma.m foi concebida para calcular a norma ∞H  em Matlab, para sistemas do tipo 

(3), fornecendo uma ajuda ao usuário, através de gráficos. A rotina divide o intervalo de cálculo e 

auto-refina seu passo sobre o eixo imaginário, enquanto o passo é maior que ε . É, portanto, uma 

rotina de custo em tempo proporcional ao ε  utilizado.  

Testes foram realizados e a rotina mostrou-se confiável. Por [12], foram realizadas as 

aproximações de Laguerre, Kautz e Padé-2 propostas e os erros ∞H foram calculados. Verificou-se a 

correspondência entre o artigo e os resultados obtidos por Laguerre e Kautz. Devido às diferenças 

encontradas por Padé-2, os cálculos foram refeitos, auxiliados por métodos gráficos, e consultou-se 

o autor do artigo. Pela análise gráfica e pelo cálculo da norma ∞H , os resultados obtidos pela 

rotina, aqui desenvolvida, mostraram-se corretos. 

Finalmente, retornam-se os pólos encontrados à rotina principal e procede-se escrevendo os 

pólos no arquivo results e apresentando duas janelas com os pólos do sistema e com o gráfico dos 

pólos, efetuado por uma rotina específica. O programa espera que o usuário toque uma das janelas 

para terminar a execução. 
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7 Validação da ferramenta 

 

7.1 Comparação com resultados da literatura 

 

O artigo [15] calcula um exemplo numérico que provém na verdade de [9] e [8]. Adotou-se o 

procedimento descrito no capítulo 7, testando esse exemplo no programa realizado. Verificou-se 

uma boa correlação entre os resultados obtidos e aqueles fornecidos na literatura. Apresenta-se, a 

seguir, toda a execução para esse caso específico. 

Os pólos instáveis “exatos”, calculados em [8], são 5.002224 e 5.999994. Em [9], estimou-se a 

parte instável de G, utilizando uma transformada rápida de Fourier a 2048 pontos e aproximando Gs 

por um sistema de 15a ordem, obtendo-se os pólos aproximados 5.0035 e 5.9981. Os melhores 

resultados de [15] são os pólos aproximados 5.0026 e 6.0000, obtidos para grau n = 4 de Padé-2.  

A função G(s) em questão é a função a seguir. 

( )
( ) ( )1801230266266

62620
)(

2322

2

−−+−−−+

−+
=

−−−−−

−−

sssss

ss

eeesees

ee
sG  

(20) 

 

Após a escolha de ε , entra-se com os atrasos iγ  e os polinômios )(spi  do denominador, 

seguidos dos atrasos 
iβ  e os polinômios )(sqi

 do numerador, como presente na tabela 1. 

 

 Atrasos Polinômios 

Denominados 

3

2

1

0

3

2

1

0

=

=

=

=

γ

γ

γ

γ

 

2

306)(

122)(

180666)(

3

2

1

2
0

−=

−=

+−=

+−=

p

ssp

ssp

sssp

 

Numerador 

2

1

0

2

1

0

=

=

=

β

β

β

 

120)(

40)(

120)(

2

1

0

=

=

−=

sq

sq

sq

 

Tabela 1: Atrasos e polinômios de G(s). 

 

Escolhendoε  = 0.001, o programa esclarece que se trata de um sistema do tipo retardado e, 
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através de uma mensagem de erro, que o numerador tem infinitas raízes instáveis. O numerador 

constitui um sistema neutro com vários atrasos. Efetuando a mudança de variável hsh Xe =− , 

obtém-se a equação 

( ) 12040120)(62620)( 2
2

2
2 −+=→−+= −− XXXheesh ss  (21) 

que apresenta as raízes 0.8471270883 e -1.180460422, sendo uma contida no círculo unitário, o que 

confirma a presença de um número infinito de raízes instáveis (ver seção 6.1.3). O numerador 

apresenta esse comportamento para qualquer que seja o valor de R∈ε . 

O programa não continua com o cálculo das raízes do numerador, mas somente com o cálculo 

das raízes do denominador. Entretanto, o usuário é aconselhado a efetuar à mão o cálculo das raízes 

do numerador, de modo a evitar o caso de raízes comuns ou muito próximas entre o numerador e o 

denominador. 

Utilizando os métodos de resolução das funções analíticas ([11]), seja we s = , a solução da 

equação é  

wiws arglog += . (22) 

 

Dessa forma, as raízes do numerador são -0.165905 e 0.165905 + (3.141593 + 2k)i, Zk ∈ . 

Verifica-se a presença de um número infinito de raízes, como previsto na literatura. Prossegue-se 

comparando as raízes do denominador, após a execução completa do programa. 

O programa continua com o cálculo das raízes do denominador. Após verificar que o 

denominador tem um número finito de raízes, o programa fornece D(s) e Dk(s). A seguir, a 

aproximação D(s) é apresentada. Entretanto, não se apresenta a aproximação Dk(s), uma vez que se 

constitui como uma aproximação com numerador e denominador de ordem 35, com coeficientes de 

ordem 30. 

3

3

3

2

33

2

)1(

2

)1(

)306(

)1(

)122(

)1(

180666
)(

+
−

+

−
+

+

+−
+

+

+−
=

−−−

s

e

s

es

s

es

s

ss
sD

sss

. 
(23) 

 

O loop é interrompido pela convergência dos pólos, quando n = 4. A norma ∞H  relativa da 

aproximação do denominador é 0.0012, sendo a norma 1850.0=−
∞H

DkD . Os pólos 

aproximados do sistema são 5.002273 e 5.999986, que são aproximações melhores que aquelas 

fornecidas por [15] e [9]. O tempo de cálculo é de 501.40s. Verifica-se, dessa forma, que não se tem 



 

 

 

21 

raízes em comum ou muito próximas entre o numerador e o denominador, o que não invalida as 

aproximações feitas. 

O gráfico dos pólos do sistema, fornecido pelo programa no final da sua execução, assim como 

as outras janelas abertas pela interface durante a execução, encontram-se no Anexo B. 

O parâmetro de parada foi a convergência dos pólos e não a convergência da norma ∞H  

relativa. Com algumas pequenas mudanças no programa, é possível realizar simulações utilizando 

um único parâmetro de parada, quer seja quanto à norma relativa, quer seja quanto à convergência 

das raízes, sempre com 001.0=ε . A comparação com o caso anterior é dada na tabela 2. Utilizando 

somente as raízes como parâmetro de parada, duas possibilidades apresentam-se: com (*) e sem 

(**) a comparação final da norma ∞H  relativa. Verifica-se, com essa separação, que o principal 

responsável pelo tempo de cálculo é o cálculo da norma ∞H . Este cálculo, dado por um loop que 

auto-refina seu passo enquanto este for superior a ε , é incorporado ao loop de convergência de n, 

aumentando o custo total em tempo de cálculo do programa. 

 

Critérios de Parada Raízes Tempo de cálculo  n 

∞

∞

−

H

H

D

DkD
 

Norma e raízes 5.002273 

5.999986 

501.40s 4 0.0012 

Somente norma 5.002257 

5.999988 

666.34s 5 8.3564*10-4 

Somente raízes 5.002273 

5.999986 

186.36s (*) 

10.14s (**) 

4 0.0012 

Tabela 2: Comparação dos resultados para diferentes critérios de parada. 

 

Todas as três modalidades citadas acima são rotinas com implementação possível e fornecem, 

para o caso das equações com um número finito de raízes instáveis, melhores aproximações que 

aquelas fornecidas na literatura. 

Outros testes foram realizados para as três modalidades, com o objetivo de avaliar a influência 

do parâmetro ε  na performance do programa.  

O parâmetro dif é o parâmetro considerado quando se comparam as raízes. É dado por 
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),max( 1,2,21,1,1 −− −− nnnn pppp . Além disso, conhecendo os pólos exatos, dados por [8], tem-se o 

parâmetro dist, dado por ( ) ( )2
,2

2
,1 999994.5002224.5 −+− nn pp . Tem-se, também, a norma 

relativa ∞H  (18), que é representada por dif2. 

Para a terceira modalidade, onde testes de convergência foram feitos somente com as raízes de 

iterações consecutivas, efetuaram-se testes para os dois casos explicados acima (com (*) e sem (**) 

a comparação da norma no final da execução). Os resultados encontram-se na tabela 3. 

 

ε  dist Raízes Tempo(*) Tempo(**)  n dif2 dif 

10-1 5.671868E-04 5.002273 

5.999986 

145.57 8.10 3 1.7624E-03 1.2723E-02 

10-2 5.009629E-05 5.002004454 

6.000516973 

192.37 9.44 4 1.1563E-03 5.3145E-04 

10-3 5.009629E-05 5.002273374 

5.999985522 

239.90 12.87 4 1.1564E-03 5.3145E-04 

10-4 3.324945E-05 5,002256739 

5,999988194 

372.13 11.37 5 8.3564E-04 1.6635E-05 

10-5 2.472935E-05 5,002248609 

5,999991562 

606.18 11.86 6 6.3366E-04 8.1297E-06 

10-6 1.845368E-05 5,002242447 

5,999993491 

1484.02 16.50 9 3.3770E-04 9.0667E-07 

10-7 1.720850E-05 5,002241207 

5,999993798 

4060.62 31.24 14 1.0740E-04 8.7484E-08 

10-8 1.710352E-05 5,002241103 

5,999993822 

4144.23 44.86 16 0.0000E+00 4.3661E-08 

Tabela 3: Resultados de simulações para a modalidade “Somente raízes”. 

 

Verifica-se, pela análise da tabela 3, o que já se esperava: as raízes dependem unicamente do 

grau n, entretanto, o tempo (*) não é somente dependente de n, mas, principalmente, de ε , utilizado 

como valor de parada nos testes efetuados em todo o programa. 

Verifica-se que, conforme se refina ε , obtêm-se raízes mais próximas às raízes exatas (veja 
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raízes e dist), assim como a diminuição de dif2 e dif. Ocorre, portanto, o comportamento assintótico 

convergente assim que se aumenta o grau n.  

Verifica-se, também, uma perda da precisão de Matlab para ε  superiores ou iguais a 10-8. 

Analisando dist, verifica-se que a norma dif2 não poderia ser nula. Isso acontece uma vez que se 

trabalha com situações críticas limites, utilizando polinômios de grau muito alto (superior a 100), 

com coeficientes de alto módulo (ordem superior a 10180), ao mesmo tempo em que se trabalha com 

valores de ε  de baixo módulo. 

Efetuando agora simulações para o primeiro caso, com a análise simultânea da convergência de 

raízes e da norma ∞H  relativa, obtêm-se os resultados da tabela 4.  

 

ε  10-1 10-2 10-3  10-4 10-5
 10-6

 

dist 2.1221E-01 1.3284E-02 5.0096E-05 3.3249E-05 2.4729E-05 1.8454E-05 

Raízes 4.869814 

5.834158 

4.989282 

6.002986 

5.002273374 

5.999985522 

5.002256739 

5.999988194 

5.002248609 

5.999991562 

5.002242447 

5.999992491 

Tempo 58.56 147.43 545.89 926.58 1632.67 3814.66 

n 1 2 4 5 6 9 

dif2 1.0908E-02 3.5261E-03 1.1564E-03 8.3564E-04 6.3366E-04 3.3770E-04 

dif 1.6584E-01 1.6883E-01 5.3145E-04 1.6635E-05 8.1297E-06 9.0667E-07 

Tabela 4: Resultados de simulações para a modalidade “Norma e raízes”. 

 

Analisando a tabela 4, verifica-se que o programa só foi suspenso, pelo critério da norma, 

quando ε  = 10-1 e ε  = 10-2. Para todos os outros casos, o critério empregado foi a distância 

máxima entre as raízes de iterações consecutivas. Nota-se, assim, que a localização das raízes 

converge mais rapidamente. Tem-se, dessa forma, um tempo de cálculo mais elevado que para o 

caso anterior, uma vez que se calcula a norma ∞H  em cada iteração.  

Verificando dist e as raízes, nota-se uma igualdade entre os valores das tabelas 3 e 4, salvo os 

casosε  = 10-1 e ε  = 10-2. Nesse caso, o programa foi suspenso pelo critério da norma e foram 

obtidos valores mais elevados de dist e do tempo de cálculo que da tabela 3, devido às piores 

aproximações das raízes. 

Considerando somente a norma relativa como parâmetro de parada, não é possível testar para 

410−≥ε , uma vez que Matlab apresenta erros nas rotinas do Symbolic Math Toolbox, devido à 
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presença de inteiros de módulo muito alto. 

Para o valor ε  = 10-3, os resultados são apresentados na tabela 2. Os resultados obtidos não são 

excepcionais, pois o procedimento é suspenso no grau n = 5, mas se tem uma simulação com alto 

custo em tempo e recursos informáticos. Dessa forma, percebe-se que esse critério, não utilizado no 

programa, não é um bom critério de parada. 

Simulações foram efetuadas para se verificar a relação entre a localização das raízes e o grau n. 

Os resultados encontram-se na tabela 5. Os outros critérios, empregados nas outras tabelas, não 

foram considerados, porque esse não era o objetivo dessas simulações. Além disso, o tempo 

máximo de cálculo é 42.94s, insignificante em comparação com os outros valores presentes nas 

tabelas 3 e 4. 

A qualidade das raízes aproximadas está em relação direta com o grau n empregado na 

aproximação, o que já se tinha concluído anteriormente. Verificou-se uma convergência exponencial 

das raízes aproximadas, dado de forma bastante lenta para 3≥n . Têm-se boas aproximações das 

raízes a partir de n = 3. 

 

n 2 3 4 5 6 

dif 1.6880E-01 1.2700E-02 5.3145E-04 1.6635E-05 8.1297E-06 

dist 1.3284E-02 5.6719E-04 5.0096E-05 3.3249E-05 2.4729E-05 

n 7 8 9 10 11 

dif 3.5428E-06 1.7127E-06 9.0667E-07 5.1579E-07 3.1083E-07 

dist 2.1103E-05 1.9368E-05 1.8454E-05 1.7935E-05 1.7623E-05 

n 12 13 14 15 16 

dif 1.9631E-07 1.2892E-07 8.7484E-08 6.1058E-08 4.3661E-08 

dist 1.7426E-05 1.7296E-05 1.7209E-05 1.7141E-05 1.7104E-05 

Tabela 5: Relação entre n e a localização das raízes. 

 

Essa característica da convergência foi percebida desde as tabelas 3 e 4, pela análise de dif, dif2 

e dist. Percebeu-se uma queda significativa para os valores iniciais de n, seguido por uma 

convergência lenta para valores superiores. Existem bons compromissos entre a qualidade das 

raízes aproximadas, tempo de cálculo e custo em recursos informáticos para os valores ε  = 0.001 e 

ε  = 0.0001. 
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Finalmente, conclui-se que as aproximações e o procedimento, descritos no capítulo 7, 

fornecem as melhores aproximações de pólos, para o exemplo em questão, que aqueles da literatura. 

Esse é um exemplo genérico de um sistema com atrasos, com um número finito de raízes instáveis. 

Para esses sistemas, a qualidade das aproximações dos pólos é garantida pela utilização da 

aproximação Padé-2, ótima no sentido ∞H . 

 

 

7.2 Comparação com os softwares livres existentes 

 

Três softwares de ajuda à localização de raízes de uma função transcendente foram estudados: 

I. DDE-Biftool; 

II. Proj2D; 

III. IntLab. 

 

DDE-Biftool, que resolve por bifurcação, é um software complexo à utilização. Foi abandonado 

na análise realizada, pois trabalha no domínio temporal, enquanto que esse trabalho utiliza o 

domínio das freqüências.  

Proj2D e IntLab trabalham com o método de cálculo por intervalo. IntLab é um Matlab toolbox 

que suporta intervalos reais e complexos aplicável em vetores e matrizes. Na sua descrição, diz ser 

concebido para apresentar execução e implementação muito rápidas, com verificação do resultado. 

Entretanto, para ser um toolbox, se configura como um ambiente de programação, no qual se 

deveriam escrever os algoritmos. Dever-se-ia, então, reescrever o programa, utilizando as funções 

desse toolbox, o que não era ideal e foi, então, abandonado.  

Proj2D é um calculador desenvolvido para caracterizar a projeção, em duas dimensões, de um 

conjunto definido por um sistema de restrições. Esse software, desenvolvido por Massa Dao, Xavier 

Baguenard e Luc Jaulin, utiliza o cálculo por intervalos e a propagação de restrições, permitindo, 

segundo os autores, obterem-se resultados garantidos, com os tempos de cálculo muito sensíveis ao 

número de parâmetros. Proj2D já foi utilizado para a análise da estabilidade de sistemas com 

atrasos. Esse foi o software escolhido para efetuar as comparações com o programa desenvolvido.  

Múltiplos testes foram realizados com Proj2D e cp_2, tendo como base o exemplo numérico de 

[9], para o qual se conhecia a localização exata dos pólos instáveis. As equações e os resultados 

encontram-se no Anexo C. A rotina para o pré-tratamento das equações, para a utilização dos 
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softwares, encontra-se no Anexo D. 

Para o exemplo de [9], verifica-se que os dois métodos apresentam uma performance 

equivalente. Justificado pela análise dos resultados presentes no Anexo C, verifica-se uma 

superioridade do programa desenvolvido neste trabalho. Mesmo sofrendo uma pequena perda de 

precisão, conforme se aumenta o grau do polinômio analisado, este método sempre permitiu a 

localização de todas as raízes, o que não acontece com Proj2D. 

Além disso, não analisando a norma ∞H , o que é perfeitamente aceitável, uma vez que se 

trabalha com um número finito de raízes instáveis, cp_2 apresenta um tempo de cálculo muito 

menor que aquele de Proj2D. Outra consideração é a dificuldade de se analisar os domínios 

fornecidos por Proj2D e a característica de se fornecer grandes domínios Ambíguos, onde se sabe, 

segundo os autores, que existe ao menos uma raiz, mas não se identifica o seu número.  

Conclui-se que Proj2D não apresentou um bom desempenho nos seguintes casos: 

I. Raízes longínquas da origem: a performance é perturbada, pois não se tem a localização de 

todas as raízes, chegando-se ao extremo de não se encontrar nenhuma raiz; 

II. Raízes próximas ou raízes múltiplas: verifica-se uma explosão do tempo de cálculo e 

domínios resultantes muito grandes, contendo várias raízes, sendo, portanto, imprecisos e 

com um desempenho ruim; 

III. Aumento do grau do polinômio ou dos atrasos: existe a possibilidade de perda de raízes. 

 

Chega-se a essas conclusões pela comparação em relação ao custo de tempo, tamanho e 

natureza dos intervalos, precisão e número de raízes fornecidas. Descobriu-se que a implantação da 

aritmética por intervalos de Proj2D não utiliza arredondamentos dirigidos aos cálculos em floating 

point, ou seja, o arredondamento para baixo, para se calcular o limite inferior do intervalo, e o 

arredondamento para cima, para se calcular o limite superior. 

Isso pode apresentar problemas de confiabilidade e tempo de cálculo, uma vez que se trabalha 

com números muito baixos ou muito altos (como e-100 e e100). Deveria se incluir a multi-precisão, 

com o cálculo pelos intervalos compreendendo o outward rounding, ou seja, o arredondamento 

exterior, não incluso em Proj2D. 

Verificou-se, entretanto, uma superioridade de Proj2D quando se efetua cálculos com funções 

com infinitas raízes instáveis, pois a versão atual de cp_2 não é capaz de efetuar esses cálculos e 

Proj2D fornece aproximações aceitáveis para altos valores absolutos de módulos. 
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7.3 Limitações 

 

A principal limitação do programa é a capacidade de determinar bem as raízes instáveis, desde 

que essas se apresentem em um número finito. Essa limitação é devida à aproximação Padé-2 

utilizada para aproximar o sistema que, mesmo sendo ótima ao senso ∞H  para o semi-plano direito, 

é uma aproximação de dimensão finita e, então, incapaz de aproximar as infinitas raízes instáveis.  

Em seguida, verifica-se que podem existir casos de infinitas raízes instáveis não previstos na 

literatura disponível. O critério de parada, nesses casos, não é otimizado e deveria ser reformulado. 

Dessa forma, podem-se ter raízes instáveis que não sejam bem aproximadas, ainda que se 

encontrem, apesar de tudo, boas aproximações de raízes de baixo módulo. Esse ponto não faz parte 

do âmbito do programa, o qual é de fornecer aproximações de boa qualidade, o que não é possível 

para o caso de infinitas raízes instáveis, utilizando uma aproximação de dimensão finita. É, 

portanto, um suplemento, tendo em vista a incapacidade de se identificar no começo da execução, 

devido à ausência de literatura disponível. 

A incorporação do cálculo da norma aumenta o tempo necessário. Deve-se admitir, a priori, 

que isto é uma ferramenta auxiliar na identificação da qualidade das aproximações para o caso de 

um número finito de pólos instáveis, pois a aproximação é já ótima ao senso ∞H . A utilização de 

Matlab, para o cálculo por loops, não é a linguagem mais rápida a disposição. Poder-se-ia 

reescrever em linguagem C. Entretanto, isso necessitaria do triplo do tempo para se escrever o 

programa em Matlab por um programador expert, sendo impossível de efetuá-lo neste trabalho, em 

função da disponibilidade de tempo. 

No começo, idealizou-se incluir o cálculo dos fatores de Bézout e de um controlador capaz de 

estabilizar o sistema. Entretanto, não houve tempo para programá-lo.  

Trabalha-se no programa com polinômios e grau proporcional a 2n. Tem-se, assim, que, 

conforme se aumenta o grau n visando fazer convergir a aproximação, trabalha-se com polinômios 

de ordem crescente, que atingem altos valores. Matlab perde sua precisão, conforme se aumentam 

os graus do polinômio. É, portanto, uma limitação do software utilizado no cálculo.  

Durante a construção das aproximações, não houve simplificação entre o numerador e o 

denominador da aproximação. Assim, perde-se precisão de resultados de Matlab, trabalhando-se 

com polinômios de alto grau, sem ser necessário, uma vez que se poderia conseguir fazer as 
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simplificações. Isso não é possível utilizando as variáveis do tipo ‘tf’, mas somente as variáveis do 

tipo ‘sym’. Dever-se-ia estudar os resultados de rotinas análogas, como zero para ‘tf’ e solve para 

‘sym’. Assegurando a mesma eficácia, o programa reteria as melhores aproximações de raízes, 

passando todo o código em ‘tf’ para ‘sym’ e efetuando as simplificações de polinômios.  
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8 Avaliação dos resultados obtidos 

 

 Obteve-se, em uma primeira etapa, a estruturação do trabalho, com o extensivo estudo da 

literatura e esquematização da rotina a ser implementada. Da mesma forma, definiram-se as 

características do programa a ser escrito, assim como se efetuou a redação das rotinas que compõem 

o programa. Pequenos testes foram efetuados com equações bastante simples e verificou-se que o 

programa respondia de forma adequada.  

 Em uma segunda etapa, com o programa concebido, realizou-se a validação e análise do 

mesmo, via realização de testes. Algumas correções pontuais foram realizadas sobre os erros 

apresentados, através da comparação dos resultados oriundos do programa com resultados advindos 

da literatura, assim como bugs próprios ao programa, que foram corrigidos. Identificou-se, também, 

que alguns softwares livres podem ser utilizados, com certa adaptação, para se obter resultados 

necessários ao estudo da estabilidade desses sistemas. Esses resultados foram usados para 

comparação com os resultados fornecidos pelo programa realizado neste projeto. 

 Um estudo sobre as limitações do programa a ser realizado foi também realizado.  
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9 Avaliação de atividades futuras 

 

Este trabalho conta com uma algumas simplificações para que a determinação de raízes seja 

possível. Essa era a definição inicial do escopo do projeto. Entretanto, três possíveis 

desdobramentos do projeto foram apresentados conforme se avançou no plano inicial: 

I. Ampliar o acesso a toda a cadeia de pólos para sistemas com dois atrasos, uma vez que 

o programa se limita aos pólos de baixo módulo; 

II. Ampliar o acesso a toda a cadeia de pólos para sistemas com n atrasos; 

III. Realizar um toolbox em Scilab. 

 

Entretanto, para a realização do projeto da matéria PMR2550, considera-se como encerradas as 

atividades com o projeto já realizado e testado. Essas atividades listadas acima se constituem como 

atividades futuras, a serem realizadas fora do escopo desta disciplina. 
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10 Cronograma 

 

O cronograma de atividades inicial foi determinado como na tabela 6, levando em conta as 

etapas que constituem o projeto. O cronograma foi respeitado, mas a etapa “Levantamento de 

Dados” foi amplificada, graças à necessidade para a definição do escopo do projeto, dada à 

identificação dos três desdobramentos possíveis do projeto. O novo cronograma de atividades se 

encontra na tabela 7. 

 

Semana 1 2 3 4 5 6 7 8 9 10 11 
Atividade / Data 25/

09 
02/
10 

09/
10 

16/
10 

23/
10 

30/
10 

06/
11 

13/
11 

20/
11 

27/
11 

04/
12 

1) Levantamento de dados: 
discussão de informações sobre 
o projeto. 

XX XX XX XX XX XX      

2) Revisão bibliográfica.  XX XX XX XX XX X     
3) Implementação.   XX XX XX XX XX XX    
4) Testes e correções.      XX XX XX X   
7) Confecção do relatório 
parcial, minuta de artigo, 
monografia final, artigo e 
material de apresentação. 

   XX   XX XX XX XX XX 

Tabela 6: Cronograma inicial de atividades. 

 

Semana 1 2 3 4 5 6 7 8 9 10 11 
Atividade / Data 25/

09 
02/
10 

09/
10 

16/
10 

23/
10 

30/
10 

06/
11 

13/
11 

20/
11 

27/
11 

04/
12 

1) Levantamento de dados: 
discussão de informações sobre 
o projeto. 

XX XX XX XX XX XX XX XX    

2) Revisão bibliográfica.  XX XX XX XX XX X     
3) Implementação.   XX XX XX XX XX XX    
4) Testes e correções.      XX XX XX X   
7) Confecção do relatório 
parcial, minuta de artigo, 
monografia final, artigo e 
material de apresentação. 

   XX   XX XX XX XX XX 

Tabela 7: Novo cronograma de atividades. 
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11 Conclusão 

 

Em comparação com os resultados dos softwares e da literatura disponível, o programa cp_2 é 

o responsável pelas melhores aproximações de raízes instáveis, uma vez que elas estejam presentes 

em número finito. Além disso, é o programa que apresenta o melhor desempenho em termos de 

tempo de cálculo, facilidade de interpretação de resultados e identificação do número exato de 

raízes. 

Isso foi possível, uma vez que escolhida uma rotina de resolução, tendo como base numerosos 

resultados da literatura. Efetuou-se pela combinação das aproximações por fatores coprimos e Padé-

2, os quais fornecem uma aproximação de dimensão finita ótima ao senso ∞H  para os sistemas 

analisados, com um sistema correto de avaliação de raízes, que analisa a convergência da 

localização das mesmas, assim que da norma ∞H  relativa.  

O programa obedece as funcionalidades essenciais definidas na seção 7.1. É um programa user 

friendly, flexível e com resultados válidos, o que foi verificado por numerosos testes, representados 

por um conjunto significativo, contido no Anexo C. Um ponto extra para a flexibilidade é que, 

mesmo que o programa tenha sido desenvolvido visando, principalmente, a utilização para a 

determinação da estabilidade dos sistemas com atraso, fica, também, uma ferramenta genérica de 

análise matemática, capaz de resolver funções transcendentes de complexidades distintas no semi-

plano direito.   

Dessa forma, desenvolveu-se um programa que se constitui como uma importante ferramenta à 

análise e à identificação de sistemas com atrasos, sendo de grande importância aos estudos de 

problemas de controle robusto. O programa será colocado em linha no mais curto intervalo de 

tempo possível para servir à comunidade de sistemas com atrasos e a todos aqueles que desejarem 

resolver funções transcendentes.  
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Anexo A: Readme 

 

PC_2 : Approximation des zéros instables de fonctions transcendantes 

pour l’étude de la stabilité de systèmes à retards. 

 

------------------------------------------------------------------------ 

 

 

This is the README file which you get when you unwrap our distribution 

file. This program enables the roots computation of transcendent 

functions, for the study of delay systems. 

 

Handling the Distribution File 

The distribution file contains the source code for the program. All 

distribution files are available as compressed tar files, gzipped tar 

files, or as zip files. For the compressed tar files, first uncompress 

and untar the file <dist>.tar.Z where <dist> is the name of the specific 

distribution: 

 

uncompress <dist>.tar.Z 

gunzip <dist>.tar.gz 

 

Then untar the file by typing 

tar xf <dist>.tar 

 

For the zip files, type the following: 

unzip <dist>.zip 

 

Generated Directory structure 

The distribution files are all designed to be unwrapped in the directory 

"pc_2". A distribution file also contains a few informative files like 

this README file and the file ’results’. The structure of the entire 

unpacked distribution file is as follows (directories): 

 

pc_2 Top-node 

cp_2/cp_2.m Main routine 

cp_2/calcul.m Auxiliary routine 

cp_2/approx_pade.m Auxiliary routine 

cp_2/tf2sym.m Auxiliary routine 

cp_2/calcul_beta_gamma.m Auxiliary routine 

cp_2/csort.m Auxiliary routine 

cp_2/norma.m Auxiliary routine 

cp_2/pade2_meu.m Auxiliary routine 

cp_2/plot_poles.m Auxiliary routine 

cp_2/print_n_d.m Auxiliary routine 

cp_2/results Auxiliary file 

cp_2/readme.txt Documentation 

 

All the source code is written in Matlab code to assure portability. 

 

Run 
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Open Matlab and place in the "cp_2" directory. Write the routine call 

’cp_2’ in the Command Window. It starts to show the Interface figures: 

 

1. Enter the value of epsilon 

2. Enter the delays of the denominator  

3. Polynoms Pi(s) = _________ * exp(-iT) 

4. Enter the delays of the numerator 

5. Polynoms Pi(s) = _________ * exp(-iT) 

 

Write in a numeric type, with ’.’ instead of ’,’. Don’t leave any other 

type, such as characters. You should write the arithmetic operators (+, 

-, *, /, ^). 

General values of epsilon are 0.001 and 0.0001. (Interface figure n°1) 

You should write all the polynoms (Interface figure n°3) for the delays 

written (Interface figure n°2). 

 

The program shows error messages on account of instability. The program 

displays too its states and features in the Command Window, such as the 

degree n  of the approximation Padé-2 and the polynoms D and Dk (as well 

as n  and Nk). 

The program opens another figure with the graph of the poles. 

The results and simulation features (epsilon, denominator delays, 

denominator polynoms, numerator delays, numerator polynoms, H-infinity 

relative norme and poles) are stocked in the file ’results’. 

 

Got Problems or Comments? 

If you encounter problems, would like to feed back suggestions good 

ideas etc. then please send a mail explaining your problem to 

mlltorquato@gmail.com 
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Anexo B: Gráfico de pólos e interfaces do programa para o exemplo numérico de [15] 

 

 Apresenta-se, aqui, a execução do programa para o exemplo da seção 8.2, de modo a 

introduzir as interfaces encontradas durante a execução para um exemplo qualquer. Dessa forma, 

apresenta-se o caráter user friendly do programa. 

 A execução do programa começa pela abertura de Matlab e pela indicação em Current 

Directory da pasta onde existem as rotinas que compõem o programa cp_2. Digita-se cp_2 para 

executar o programa.  

 A próxima janela apresentada pede pelo valor de ε , que será utilizado em todos os loops do 

programa, como se vê na figura B.1. O valor habitual é 001.0=ε . 

 

Figura B.1: Inserção do valor de ε . 

 

 Em seguida, começa a inicialização do denominador. Pode-se acompanhar o estado do 

sistema pela análise do Command Window. A próxima janela pede os atrasos do denominador 
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(figura B.2). 

 

Figura B.2: Inserção dos atrasos iγ  do denominador. 

 

 Para cada atraso 
iγ  incluído, deve-se introduzir um polinômio )(spi

 na janela mostrada 

pela figura B.3. Para o sistema incluído, no exemplo numérico de [15], o numerador apresenta 

infinitas raízes instáveis. Desse modo, o programa indica, por uma mensagem de erro, o estado do 

sistema e explica que o programa não continua o cálculo das raízes do numerador. Isso é somente 

um dos casos possíveis, onde o programa mostra mensagens de erros ou a explicação ao usuário. As 

outras mensagens possíveis já foram explicadas na descrição do programa. 
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Figura B.3: Inserção dos polinômios )(spi  do denominador. 

 

 O programa continua com o cálculo das raízes do denominador. Como as aproximações de n 

e Nk não foram efetuadas, têm-se somente apresentados D e Dk. A apresentação dessas saídas, entre 

outras, é verificada na figura B.4. 

  Na finalização do programa, quando se tem raízes instáveis, mostram-se duas janelas: uma 

com o gráfico dos pólos instáveis (figura B.5) e outra com os valores numéricos calculados dos 

pólos, divididos em partes reais e imaginárias (figura B.6). 
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Figura B.4: Estado do sistema e aproximações. 

 

 

Figura B.5: Gráfico dos pólos instáveis.  

 



 

 

 

41 

 

Figura B.6: Valores numéricos dos pólos. 
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Anexo C: Comparação com Proj2D – Equações e resultados 

 

 Testaram-se o programa e o software Proj2D sobre um conjunto de funções representativas, 

de modo a se avaliar as performances dos dois programas para casos diferentes: polinômios de 

graus altos, com grandes atrasos, com raízes múltiplas ou próximas, com raízes afastadas ou com 

raízes complexas. 

 Utilizou-se, como base, o exemplo numérico de [9], chamado a seguir por fGu, já plenamente 

estudado na seção 8.1. Mudanças foram feitas, multiplicando por diversos polinômios. Depois, 

efetuou-se uma mudança na função fGu, obtendo a função fGu
mod, a qual será utilizada como base 

para o estudo de outras funções compostas. 

 Sejam 

( ) ( )1801230266266 2322 −−+−−−+= −−−−− sssss

Gu eeeseesf        e (C.1) 

( ) ( )180123066266 222mod −−−−−+= −−−− ssss

Gu eeseesf  (C.2) 

as funções testadas são: 

( ) ( )[ ] 1
1 *5*1 −

−−= Gufssf     (C.3) 

( )[ ] 1
2 *1 −

−= Gufsf  (C.4) 

( ) ( )[ ] 1
3 *15*1 −

−−= Gufssf  (C.5) 

( ) ( )[ ] 1
4 *3*1 −

−−= Gufssf  (C.6) 

( ) ( )[ ] 1
5 *20000*150 −

−−= Gufssf  (C.7) 

[ ] 1mod
6

−
= Guff  (C.8) 

( )[ ] 1mod
7 *1

−
−= Gufsf  (C.9) 

( ) ( )[ ] 1mod
8 *15*1

−
−−= Gufssf  (C.10) 

( ) ( )[ ] 1mod
9 *5*1

−
−−= Gufssf  (C.11) 

( )[ ] 1mod
10 *5

−
−= Gufsf  (C.12) 

( ) ( ) ( )[ ] 1mod
11 *150*20*3

−
−−−= Gufsssf  (C.13) 

( )[ ] 1mod
12 *2000

−
−= Gufsf  (C.14) 
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( )[ ] 17654322
13 13)1234(2732)6626(6

−−−−−−−− +−+−−+−−−+= seeseeseseesf sssssss  (C.15) 

( )[ ] 12
12 *136

−
+−= Gufssf  (C.16) 

 

 As equações foram escolhidas, no modo descrito acima, porque se conhecem os pólos exatos 

de fGu, dados por [8]. Inclui-se a multiplicação por fatores que fornecem facilmente raízes bem 

estabelecidas, a fim de verificar o desempenho dos programas para encontrá-las. 

 Para cp_2, os testes foram realizados com ε  = 0.001 e não incluem a verificação da norma 

∞H . Em Proj2D, os testes são realizados com ε  = 0.01 e ε  = 0.001. Trabalha-se com ε  = 0.001 

quando se trata de um caso crítico (intervalo sem identificação de raízes ou intervalo com várias 

raízes). 

 Dessa forma, uma vez que se sabe a localização das raízes e que se têm os resultados das 

simulações anteriores com um valor maior de ε , tenta-se utilizar os domínios inicias menores em 

torno do valor das raízes com um valor menor de ε . 

 A comparação é realizada tendo em conta as raízes encontradas e o tempo de cálculo. No 

caso de Proj2D, apresentam-se as raízes encontradas pelo intervalo que as contém e pela natureza 

do intervalo (entre domínios Solução e Ambíguo). 

 As rotinas em Maple, para se encontrar as equações a serem introduzidas nos dois 

programas, encontram-se no Anexo D, para a função f1. 

 Os intervalos representados acima foram reagrupados de modo a facilitar a interpretação dos 

resultados e a sua demonstração. Geralmente, o resultado de uma simulação em Proj2D é de 

interpretação muito mais difícil. Os intervalos foram reagrupados em favor da segurança. 

 Verifica-se, assim, que cp_2 fornece resultados de interpretação muito mais fácil. Entretanto, 

Proj2D fornece um domínio ambíguo, mas é claro que existe ao menos uma raiz nesse intervalo (de 

acordo com os autores). Entretanto, não se explica o número de raízes dentro do intervalo. Isso não 

é desejado para a identificação de um sistema a ser controlado. 

 Analisando os pólos encontrados por cp_2 para as funções de f1 a f5, verifica-se que o erro 

máximo foi de 0.000049. Além disso, o programa é capaz de encontrar todos os pólos, mesmo em 

casos extremos, como os pólos muito próximos ou os pólos longínquos. Esse comportamento é 

verificado junto aos tempos de cálculo muito baixos em relação àqueles apresentados por Proj2D. 

 A característica mais importante, em relação ao tempo de cálculo, é que cp_2 apresenta um 

comportamento relativamente uniforme em relação à presença de graus diferentes e a casos 
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diferentes de distribuição dos pólos: pólos próximos, pólos distantes da origem. Isso não é 

observado em Proj2D, onde a presença de pólos múltiplos ou próximos aumenta muito o tempo de 

cálculo. Esse comportamento é acompanhado da localização de um domínio de grandes dimensões, 

não sendo, então, eficaz, quando o objetivo é determinar os pólos do sistema.  

 Tomou-se a liberdade de modificar a função da literatura, fGu, devido à qualidade dos pólos 

encontrados pela função fGu e à correspondência entre os pólos encontrados pelos dois programas. 

Desse modo, considera-se que o programa tem um comportamento e um desempenho independente 

dos fatores críticos considerados nos primeiros testes. Deseja-se, agora, testar a influência do 

número de atrasos e dos seus módulos. 

 Dessa forma, as simulações foram realizadas com as funções f6 a f13. Considera-se que os 

resultados de cp_2 são boas aproximações dos pólos do sistema, enquanto se tem um número finito 

de raízes instáveis. Verifica-se que os dois programas apresentaram, para f6, o mesmo número de 

pólos, com as localizações respectivas coerentes. Isso foi pego como uma prova do desempenho de 

dois programas para essa função. Verifica-se, também, um tempo de cálculo bastante baixo para 

Proj2D, enquanto não se tem raízes múltiplas e se têm atrasos mais baixos.  

 Multiplica-se, então, f6 por fatores com as raízes facilmente determinadas, para continuar a 

avaliação das performances dos programas. Pela análise de f8, verifica-se que a presença de raízes 

longínquas penaliza o desempenho de Proj2D, uma vez que se perde a precisão e o tamanho dos 

intervalos fornecidos, unidos a uma explosão do tempo de cálculo.  

 Pela análise de f11 e f12, verifica-se a presença de pólos longínquos, não reconhecidos por 

Proj2D, e que podem até retirar o reconhecimento de outras raízes mais próximas à origem (f12). Já 

para a função f13, criada aleatoriamente com o objetivo de analisar o desempenho dos programas 

com presença de grandes atrasos, não se verifica nenhuma correlação entre os resultados dos dois 

programas, ao mesmo tempo em que se verifica um ligeiro aumento no tempo de cálculo de cp_2. 

 Não se podem emitir conclusões sobre a qualidade das performances dos sistemas, mesmo 

que se possa verificar que os pólos de cp_2 são mais próximos àqueles de f6 e fGu. Verificando as 

simulações anteriores, nota-se que os resultados de cp_2 são geralmente mais precisos e confiáveis.  
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 Programa Tempo Pólos Natureza 
f1  cp_2 8.75 1.000000; 5.000000; 5.002273; 5.999986  
 Proj2D 473.68 [0.999999, 1.000000]x[0, 1.532455E-11] Ambíguo 
f2 cp_2 8.51 1.000000; 5.002273; 5.999986  
 Proj2D 13.44  [0.999999, 1.000000]x[0,0] 

[5.00224095480, 5.00224095485]x[0,2.913511E-11] 
[5.999755, 6.005859]x[0,0.005346] 

Ambíguo 

f3 cp_2 8.99  1.000000; 5.002273; 5.999986; 1.500000e+001  
 Proj2D 262.87  [0.999999,1.000000]x[0,0] 

[4.965209, 6.079102]x[0, 0.079346] 
[14.996983, 15.008545]x[0, 0.003052] 

Ambíguo  

f4 cp_2 8.35 1.000000; 3.000000; 5.002273; 5.999986  
 Proj2D 871.38  [0.999048, 1.000562]x[0, 0.000781] 

[2.993310, 3.006934]x[0, 0.007032] 
[4.987573, 5.017090]x[0, 0.015625] 
[5.991894, 6.008545]x[0, 0.008594] 

Ambíguo 

f5 cp_2 9.09  5.002273; 5.999986; 1.500000e+002; 2.00000e+004  
 Proj2D 28.85  [5.001362, 5.003261]x[0, 0] Ambíguo  
f6 cp_2 6.86  5.002283; 5.999965  
 Proj2D 0.312  [5.00224105610,5.00224105612]x[0,3.73E-12] 

[5.99999385062,5.99999385063]x[0,4.32E-12] 
Ambíguo  

f7 cp_2 6.52 1.000000; 5.002283; 5.999965  
 Proj2D 4.56 [0.999999,1.000000]x[0,0] 

[5.0022410560,5.0022410561]x[0,2.88E-11] 
[5.999366,6.000354]x[0,0.000976] 

Ambíguo  

f8 cp_2 6.80 1.000000; 5.002283; 5.999965; 1.500000e+001  
 Proj2D 143.30 [0.999999, 1.000000]x[0, 3.004E-12] 

[4.90625, 5.125]x[0, 0.15625] 
[5.8671875, 6.117187]x[0, 0.1875] 
[14.992187, 15.007812]x[0, 0.007812] 

Ambíguo  

f9 cp_2 6.28 1.000000; 5.000000; 5.002283; 5.999965  
 Proj2D 1814.30 [0.999260, 1.003461]x[0, 0] 

[4.121093, 6.425781]x[0, 1.425781] 
Ambíguo  

f10 cp_2 7.02 5.000000; 5.002283; 5.999965  
 Proj2D 3150.44 [4,983642, 5.018798]x[0, 0.031494] 

[5.999511, 6.000244]x[0, 0.000732] 
Ambíguo  

f11 cp_2 6.89 3; 5.002283; 5.999965; 20; 150  
 Proj2D 465.94 [2.982146, 3.017397]x[0, 0.019531] 

[4.808095, 5.259295]x[0, 0.449219] 
[5.724594, 6.253344]x[0, 0.46875] 

Ambíguo  

f12 cp_2 6.57 5.002283; 5.999965; 2.000000e+003  
 Proj2D 0.52 ø x ø -    
f13 cp_2 22.48 5.002246; 5.999984  
 Proj2D 0.83 [0.046431,0.053062]x[0.234587, 0.251133] Ambíguo  
f14   cp_2 8.46 3 + 2i ; 3 - 2i ; 5.002273 ; 5.999986  
 Proj2D 948.63 [2.802734, 3.199219]x[1.748046, 2.197266]  

[4.525390, 6.234375]x[0, 0.888672] 
Ambíguo 

Tabela C.1: Comparação dos resultados de cp_2 e Proj2D. 
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A simulação com f14 foi feita para se analisar o desempenho dos programas para se encontrar 

pólos complexos. Os dois programas encontraram os pólos procurados, entretanto Proj2D 

apresentou um tempo maior de cálculo e grandes intervalos.  

 Apresenta-se, na figura C.1, a interface inicial, onde se definem as restrições, o valor de ε  e 

as variáveis, para f1. Apresenta-se, também, o resultado da simulação com a determinação 

progressiva dos intervalos, para f14, na figura C.2. 

 Numerosos testes foram feitos para sistemas com infinitas raízes. Para a função f15, por 

exemplo, testou-se em cp_2 e verificaram-se, graças à literatura, que o caso apresenta infinitas 

raízes instáveis. Desse modo, o programa explica, através de uma mensagem de erro, e é 

reinicializado.  

sessf −+−= *22
15  

(C.17) 

Para Proj2D, entretanto, utilizou-se 01.0=ε  com um intervalo inicial de [0, 100] x [0, 100], 

chegando após 0.21s às raízes mostradas na tabela C.2, a qual contém, também, as raízes 

calculadas, de acordo com os métodos da literatura. 

Essas raízes foram comparadas aos valores propostos na literatura e constituem boas 

aproximações para as raízes de alto valor absoluto. Verifica-se, então, uma superioridade de Proj2D 

no caso de infinitas raízes, pois é possível calcular, com uma precisão relativa, certo número do 

conjunto de infinitas raízes instáveis.  

Isso foi possível antes por cp_2. Notou-se uma perda do caráter assintótico da aproximação 

Padé-2 durante a aproximação do sistema com infinitas raízes instáveis, como se vê pela figura C.3. 

Mostra-se, na figura C.4, o gráfico, manipulado em Excel para a retirada de raízes que não 

obedecem ao caráter assintótico, as infinitas raízes calculadas da função f15, antes da modificação 

do programa.  

A localização das infinitas raízes instáveis foi estudada com o programa aqui produzido, mas 

isto foi excluído do programa, porque se quer respeitar a validade dos resultados fornecidos (veja 

seção 7.1). 
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Figura C.1: Determinação dos parâmetros da simulação em Proj2D para f1. 
 

 
Figura C.2: Resultados da simulação de f14 em Proj2D. 
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Proj2D Literatura 
[0.000990,0.000991]x[50.245548,50.245570] 0,000989 + 50,245588i 
[0.000782,0.000783]x[56.530953,56.530974] 0,000781 + 56,530983i 
[0.000633,0.000634]x[62.815912,62.815933] 0,000633 + 62,815937i 
[0.000523,0.000524]x[69.100548,69.100569] 0,000523 + 69,100569i 
[0.000439,0.000440]x[75.384942,75.384962] 0,000439 + 75,384960i 
[0.000374,0.000375]x[81.669149,81.669169] 0,000374 + 81,669166i 
[0.000323,0.000323]x[87.953209,87.953230] 0,000323 + 87,953226i 
[0.000281,0.000281]x[94.237154,94.237174] 0,000281 + 94,237169i 
[0.003980,0.003981]x[25.092710,25.092731] 0,003957 + 25,092952i 
[0.002542,0.002542]x[31.383966,31.383987] 0,002533 + 31,38409i 
[0.001763,0.001763]x[37.672507,37.672527] 0,001759 + 37,672586i 
[0.001294,0.001295]x[43.959507,43.959527] 0,001292 + 43,959561i 
[0.007110,0.007111]x[18.795943,18.795964] 0,007036 + 18,796504i 
[0.016218,0.016220]x[12.484914,12.484935] 0,015831 + 12,486793i 
[0.070521,0.070527]x[6.1086384,6.1086641] 0,063326 + 6,124030i 

[0.775195,0.78125]x[1.395545,1.400976] NaN – Infinito 
Tabela C.2: Raízes de f15 por Proj2D. 

 

 
Figura C.3: Localização das infinitas raízes instáveis. 
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Figura C.4: Gráfico das infinitas raízes de f15. 
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Anexo D: Rotina em Maple para a comparação com Proj2D 

 

As rotinas abaixo foram criadas para gerar de modo quase automático as entradas dos 

programas cp_2 e Proj2D. As rotinas em Maple foram utilizadas, graças à facilidade de aplicação e 

a riqueza na gestão das variáveis simbólicas.  

Apresentam-se, aqui, as rotinas para a função f1 (C.3), uma vez que se aplica a mesma rotina 

para as outras funções. A fim de se produzir as entradas para o programa Proj2D, utiliza-se a rotina 

1_fct.mw dada abaixo. 

 

G := (s-1)*(s-5)*(6*s^2+(6*exp(-2*s)-2*exp(-s)-66)*s-2*exp(-3*s)) 

G := collect(evala(Expand(G)), s) 

G := evalc(subs(s = x+I*y, G)) 

Gre := convert(evalc(Re(G)), string) 

Gim := convert(evalc(Im(G)), string) 

 

 Esses comandos geram as entradas, no campo “Restrições”, do programa Proj2D, 

respectivamente Gre e Gim, igualadas a zero. A fim de se produzir as entradas para o programa 

cp_2, utiliza-se a rotina 1_fct_matlab.mw, dada pelos comandos abaixo. 

 

G := (s-1)*(s-5)*(6*s^2+(6*exp(-2*s)-2*exp(-s)-66)*s-2*exp(-3*s)) 

G := Expand(G) 

G := evala(G) 

G := collect(G, exp(-s)) 

G := collect(G, exp(-2*s)) 

G := collect(G, exp(-3*s)) 

G := convert(G, string) 

 

 Chega-se, então, à função G, onde se encontra a divisão dos polinômios para cada atraso. 

Esses polinômios são as entradas do programa cp_2. 
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Anexo E: Resolução formal de uma equação de terceiro grau para a análise da 

estabilização de um sistema com atraso 

 

 A questão é saber se um controlador do tipo 
γβα ++

++
=

ss

cbss
sC

2

2

)(  pode estabilizar (ao senso 

∞H ) um sistema com atrasos do tipo 
σ−

=
−

s

e
sP

sT

)( , para todo 0≥T . 

 Busca-se, dessa forma, que ( ) 1−
+ PCI , ( ) 1−

+ PCIP  e ( ) 1−
+ PCIC  sejam em ∞H . O 

denominador da malha fechada é do tipo ( ) ( ) ( ) ( )sTsCsATsF −+= exp, , onde )deg()deg( CA > . 

As técnicas de Walton e Marshall (seção 6.1.2) foram utilizadas para se determinar os valores do 

atraso que desestabilizam o sistema e que, então, eventualmente, o re-estabilize.  

 Começou-se a estudar o controlador 
γβα ++

++
=

ss

cbss
sC

2

2

)(  capaz de estabilizar 
σ−

=
−

s

e
sP

sT

)( . 

Analisando ( )0,sF , chega-se a um polinômio parametrizado de grau 3 (com 5 parâmetros). Deve-se 

verificar a ausência de raízes instáveis para 0=T , o que foi feito pelo critério de estabilidade de 

Routh-Hurwitz. O método de Walton e Marshall pede que se verifique se existem valores de 

parâmetros tais que um polinômio parametrizado de grau 3 não tenha nenhuma raiz real positiva. 

Tentou-se utilizar o método de Cardan para 0>T . 

 Chegou-se a um sistema não linear de equações parametrizadas, difícil de ser resolvido à 

mão ou com Maple. Essa parte do trabalho foi abandonada, por não se configurar como integrante 

do escopo inicial deste trabalho, mas como uma possível extensão do mesmo.  

 

 

 

 

 

  

 


