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RESUMO

A presenga de atrasos em diversos casos reais de sistemas faz com que a
teoria de controle se torne nao trivial, requerendo técnicas especificas de
analise e comando. A comunidade que estuda o comportamento de sistemas
com atraso se interessa pela determinacéo da estabilidade desses sistemas,
a qual pode ser determinada pela localizagdo de seus zeros e pélos. Alguns
potentes softwares de calculo numérico existem; entretanto, ndo contam
com rotinas especializadas e aproximacdes a sistemas de ordens inferiores,
que devem ser realizadas antes de se aplicar as rotinas disponiveis. Parte
deste trabalho visa o estudo da determinacdo de raizes instaveis pela
aproximacao de funcbes transcendentes, para posterior estudo da
estabilidade de sistemas com atraso. Outra parte consiste no
desenvolvimento de um programa flexivel de calculo das raizes, para servir
de ferramenta ao estudo da estabilidade de um sistema com atraso

qualquer.

Palavras-chave: Controle, sistemas com atraso, estabilidade, aproximagdes
de fungoes transcendentes.



ABSTRACT

Delays occur in diversified types of real systems, so that the control theory
becomes not trivial, requiring specific techniques for the analysis and
command. The delay-community, which studies the behaviour of delay-
systems, is interested in determining these systems’ stability. This stability
can be determined by the placement of zeros and poles. Some powerful
softwares of numerical computing exist. However, they do not contain
specialized routines and approximations to low-order systems should be
done before using the available routines. Part of this work intends to study
the determination of unstable roots by approximating transcendental
functions, for further study of the delay-systems’ stability. Another part of this
work consists in developing a flexible program to compute roots, in order to

serve as a tool for the study of the stability of any delayed system.

Keywords: Control, delay-systems, stability, transcendental functions.
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1 Introducao

Diversos sistemas reais apresentam evolucdo dependente do estado atual, assim como dos
estados precedentes. A presencga de transporte de matéria, de energia ou de informagdo, fendmeno
que se constitui como uma fonte de atraso, leva a este comportamento. Estes sistemas sdo
modelados com o uso de equagdes diferenciais com atrasos, as quais apresentam uma dimensao real
do estado infinito. Dessa forma, a presenca de atrasos faz com que a teoria de controle se torne nio
trivial, requerendo técnicas especificas de andlise e comando.

A comunidade que estuda o comportamento desses sistemas se interessa pela determinagao
da estabilidade dos mesmos, através da determinacio da localizacdo de seus zeros e pdlos. Alguns
potentes softwares de célculo cientifico, como Matlab e Scilab, estdo disponiveis. Entretanto, nio
existem rotinas adaptadas aos sistemas supracitados. Devem-se incorporar aproximacgdes de
sistemas lineares invariantes com o tempo de dimensao infinita por sistemas de dimensao finita de
ordens inferiores, para se aplicar as rotinas disponiveis.

Este trabalho tem como metodologia a revisdo da literatura disponivel sobre sistemas com
atraso, bem como o estudo da determinacdo de raizes instdveis pela aproximacdo de funcgdes
transcendentes, para a obtencdo de zeros e polos, os quais servirdo ao estudo da estabilidade desses
sistemas. O resultado deste estudo sera utilizado no desenvolvimento de um programa flexivel de
célculo de raizes para servir de ferramenta ao estudo da estabilidade de um sistema com atraso
qualquer.

Dessa forma, este trabalho tem como principal motivagdo atender as necessidades de uma
comunidade de pesquisadores especializados no estudo destes sistemas, através da integracdo de

conhecimentos tedricos a uma aplicacao pratica flexivel.



2 Cenario

Inicialmente, as pesquisas conduzidas sobre este tema eram de natureza puramente
tecnoldgica, mas os componentes metodologicos rapidamente dominaram a cena. A razdo essencial
foi, acima de tudo, a necessidade da formalizacio de problemas de base, tais como a estabilizacdo e
o recurso aos atrasos distribuidos, seguidos pela necessidade de se desenvolver moddulos de
ferramentas especificas, passo incontorndvel a toda e qualquer implementacdo de aplicacéo.

Esse importante eixo de pesquisa foi desenvolvido desde o inicio dos anos 90, motivado a
principio pelas demandas do setor sdcio-econdmico e preocupava-se com a estrutura de sistemas
lineares com atraso. Esses sistemas podem representar fendmenos que intervém em numerosos
processos, tais como as telecomunicagdes, os transportes de energia ou de informagdo. Sdo
estudados em diversos programas de pesquisa internacionais, como no National Science
Foundation (NSF) e no Centre national de la recherche scientifique (CNRS). Entre eles, o Institut
national de la recherche em informatique et automatique (INRIA) estd fortemente presente no
desenvolvimento da “estrutura” e “estabilizacdo”.

Para a modelagem e andlise de sistemas com atrasos, diferentes propriedades matematicas
sdo utilizadas. Algumas ferramentas matemadticas, como o uso do anel, denominado Epsilon, para a
localizag@o de podlos para sistemas de equacdes lineares, ja foram apresentadas, mas as principais
conseqiiéncias para o comando e estabilizacdo restam ainda como objeto de estudo.

Alguns fendmenos ainda ndo foram dominados, nem explicados. Por exemplo, diferentes
esquemas de discretizacdo de integrais mostraram nao ser equivalentes em relagdo a conservagio da
estabilidade. E necessério encontrar uma aproximagio que nio introduza instabilidades estruturais.
Algumas configuragdes ja foram exibidas, entretanto, na globalidade, existem problemas que
continuam em aberto, cuja temdtica € atualmente abordada em trabalhos.

As leis de comando que operam na localizagdo dos pdlos sdo complexas, definidas como
equacdes integrais implicitas. Diversos métodos foram propostos para se avaliar a margem de
estabilidade sobre o atraso. Ao senso entrada limitada - saida limitada ([18]), as noc¢des de
estabilidade e estabilizag¢do se formulam no contexto geral da classe de Callier-Desoer e de fungdes

de transferéncia H . Continuou-se a estudar o problema com a realiza¢do de uma escala constituida

por diferentes tipos de sistemas com atraso.

Atualmente, os formalismos sdo bem conhecidos e sao utilizados pela comunidade de estudo



em todo o mundo. As pesquisas se voltam em direcdo & implementacdo desses métodos. Isso
conduz, de um lado, ao estudo de dificuldades numéricas que foram sublinhadas por vérios autores
e, de outro lado, ao aprofundamento da teoria, para levar em consideracdo a robusteza, resolver
questdes especificas, generalizar o método para classes mais amplas de sistemas dindmicos ou, ao
contrario, especializd-la para importantes modelos simples em pratica.

Alguns algoritmos desenvolvidos ja foram implementados em ferramentas de célculo
simbdlico, como CoCoA e MapleV, permitindo, assim, abordar os aspectos da estabilidade. Sdo
ferramentas metodoldgicas que ndo existiam antes e que atualmente sdo continuados por alguns
pesquisadores italianos das Universidades de Ancona e de Roma.

Entretanto, para se continuar o estudo da estabilidade de sistemas com atraso, existe uma
necessidade de se incluir os diversos formalismos e algoritmos desenvolvidos, utilizando da
manipulagdo simbdlica como meio para se resolver um sistema especifico. A satisfacdo a esta

necessidade serd o objeto deste trabalho.



3 Discussao do projeto

Este projeto foi dividido nas seguintes etapas:
Levantamento de dados;

a
b. Revisdo bibliogrifica;

o

Implementacio;

&

Testes e Correcdes;

e. Confeccdo de documentagdo.

Ajudando a constituir o cronograma de atividades, estas etapas, previstas para uma
realizacdo logica, atendem, primeiramente, a uma boa definicdo do problema, dado pelo
Levantamento de dados e pelas bases lancadas com a Revisdo bibliografica. Em seguida, parte para
a implementacdo do programa, para a verificacio através de testes e corregcdes e para a confecgdo da
documentagao.

Atividades a serem realizadas para o levantamento de dados:

a.1 A determinacdo da necessidade da comunidade de pesquisa, a partir do levantamento dos

interesses de uma pesquisadora do grupo;

a.2 A busca por um professor interessado, para assumir a orientagdo junto a Escola

Politécnica da USP;

a.3 Levantamento de referéncias bibliograficas.

Atividades previstas para a Revisdo bibliografica:
b.1 Leitura e andlise de referéncias apontadas no levantamento de dados;
b.2 Organizacdo de informacdes de modo a favorecer a operacionalizacdio pelo

desenvolvimento do programa.

Divisdo das atividades para a implementacao:

c.1 Determinagdo de funcionalidades desejadas para a ferramenta desenvolvida;
c.2 Determinagdo do software a ser utilizado para a implementagdo do programa;
c.3 Determinacgéo de procedimento realizado no programa; e

c.4 Redagao das rotinas que compdem o programa.



Descric¢ao de atividades contidas na verificacio do programa:
d.1 Teste com exemplo estudado na literatura
d.2 Comparagdo com resultados fornecidos por outros softwares livres

d.3 Determinacgéo de limitagdes do programa

Nesta etapa, as correcdes sdo efetuadas pontualmente, conforme se identifiquem as
necessidades de modificar algo ou bugs no programa.

Por ultimo, visa a confeccio de documentacdo necessdria para a disciplina PMR2550,
através da determinacdo de modelos a serem utilizados, na forma de um relatério final e de um

artigo, para descricdo de atividades realizadas no periodo.



4 Atividades realizadas

Grande dificuldade foi colocada no Levantamento de dados, desde o inicio do projeto, o que
necessitou a consagracdo de grande parte do tempo a sua execucdo. Apods a realizacdo da primeira
versdo da ferramenta, trés possiveis desdobramentos do trabalho foram discutidos com a
pesquisadora interessada no tema do trabalho. Entretanto, as alteracdes foram balanceadas
internamente com as outras atividades previstas para o periodo. Todas as atividades previstas foram
realizadas.

Através do estudo bibliografico, puderam-se verificar as formas de sistemas com atraso.
Verificou-se, também, que ndo existem rotinas adequadas disponiveis nos softwares Matlab e Scilab
para o cédlculo dos pélos, o que justifica a motivacdo inicial de se incorporar aproximagdes de
dimensao finita para sistemas de dimensao infinita, desenvolvendo-se, em seguida, uma ferramenta
que execute essas aproximacdes, para se utilizar as rotinas disponiveis. Foi possivel, também, a
derivacdo de equagdes, apoiada sobre a extensa bibliografia, as quais sdo utilizadas no programa.
Mesmo que todos os pdlos possam ser identificados, a preocupagio se volta somente a localizacio
de poélos instaveis para a determinagéo da estabilidade do sistema.

A seguir, é apresentada a abordagem tedrica, que permitiu a derivagdo de condigcdes e
expressdes utilizadas no cdlculo dos zeros, assim como a definicdo de funcionalidades a serem
apresentadas pelo programa. Apresenta-se, também, a rotina implementada pelo programa escrito
em cdédigo Matlab. Finalmente, apresentam-se os resultados dos testes realizados sobre um exemplo

fornecido pela literatura e com resultados de outros softwares livres.



5 Abordagem teérica

5.1 Sistemas com atraso

5.1.1 Generalidades

Numerosos sistemas sdo modelados por equagdes diferenciais com atrasos (ver [2], [14],
[13] para numerosos exemplos): a evolugdo do processo ndo depende somente do estado presente,
mas também dos estados anteriores. Esses sistemas, cuja dimensdo real do estado € infinita,
requerem técnicas especificas de anélise e comando (ver [1], [13], [16], [4] e [7]).

Consideram-se aqui os sistemas lineares que t€ém um ndmero finito de atrasos (discretos
positivos) sobre o estado, a entrada e a saida, e que sdo descritos pelas equacdes diferenciais

lineares da forma

n k m (1)
)+ D Ex(—p) =D Ax(t—t)+Y Bu(t—1,)
(S) i=0 i=0 i=0
I )4
ye)=> Cxtt—0)+ D du(t-v,)
i=0 i=0
onde x(t)e R",u(t),y(t)e R, A.,B,,C,;sdo matrizes nXn, nxle 1xn e d,e R.
A fung@o de transferéncia G de (S) é uma funcdo transcendente dada por
K (@)

-1
i=0 pars pary

i=0 i=0
que pode ser reescrita como

Gls)= h,(s) (3)

m g o) 3 (4)

com 0=%,<7,...<7,,0< B, <p,...< B, . p,sendo polindmios de grau J,, tal que J, <6, para
todo i # 0, e g, sendo polindmios de grau d, < 9, para todos os i (sistema préprio).

Os sistemas com atraso se dividem em duas classes:



- Os sistemas de tipo retardado: &, < J,para todo i# 0. Essa classe de sistemas foi
analisada pela primeira vez por Bellman e Cooke [2]. Eles mostraram que esses
sistemas possuem um niimero finito de pélos (s,) no semi-plano direito. Os pélos (s, )
satisfazem Res, — —oo;

- Sistemas do tipo neutro: o, = d,para ao menos um i # 0. Os pélos se localizam em

uma banda centrada em torno do eixo imaginario.
Os atrasos que sdo todos miltiplos de um mesmo inteiro sio chamados de atrasos
comensuraveis. Os outros atrasos sdo chamados de atrasos gerais. Para os sistemas do tipo neutro,
trabalha-se com retardos do tipo comensuravel, uma vez que, no caso geral, o comportamento

assintdtico das cadeias de pdlos ndo é sempre determindvel.

5.1.2 Estabilidade de sistemas com atraso

Para o caso geral de sistemas do tipo (1), aos quais se adiciona as condi¢des iniciais

x(O):xooeR" e x=x, sobre [—T,O], dado T o maior dos atrasos fisicos, ou seja,

T= max(rr%ax] y72 rr%ax] tl.) , diferentes nocdes de estabilidade sdo consideradas, dado que se tem uma
i€|0,n i€|0,k

abordagem temporal ou entrada-saida (em freqii€éncia) do problema.
O sistema € dito assintoticamente estdvel se

V(xy9.Xy) € R" X (= T.,0), lim|x(r)] ., =0. &)

O sistema € dito exponencialmente estavel se existe M >0 e @ >0 tais que

V(xy,%,) € R" X L? (— T,O), Vvt 20, |x(t)|R,, <Me™ Qx00| + ||x0 2 ) (6)
O sistema € dito H _-estdvel se
e, < a)

Se o sistema for H_ -estdvel, toda entrada u no L, fornece uma saida no L,. Os sistemas

com atraso de tipo retardado H_-estivel sdo se e somente se eles ndo apresentam pdlos no



{Res > 0} (essa tltima condicdo sempre € necessdria, mas raramente suficiente para um sistema
qualquer). Tem-se, portanto, nesse caso, equivaléncia entre estabilidade assintética, estabilidade
H _ e estabilidade exponencial. Para sistemas de tipo neutro, a estabilidade exponencial implica a
estabilidade H .

Tem-se a estabilidade em malha fechada, mostrada na figura 1, se as funcdes de

transferéncia (I + PC)™",P(I + PC)" e C(I + PC)"'sdo em H_. No ambito desse estudo, interessa-

se pela estabilidade H .

o= P

C *E'_-?O:d

Figura 1: Malha fechada padréo.

Uma caracteristica desses sistemas € que eles ttm um ndmero infinito de pdlos, cuja
localizacdo depende continuamente dos atrasos (unicamente para valores estritamente positivos de
atrasos no caso dos sistemas do tipo neutro).

O método de Walton e Marshall (ver [10] e [6]) pode ser utilizado para concluir sobre a
presenga de poélos instaveis de sistemas, cuja funcdo de transferéncia tem um denominador do tipo
F(s,h)= A(s)+ C(s)e™ . Ele permite determinar os valores dos atrasos, que desestabilizam o
sistema e, entdo, que eventualmente o re-estabilizam etc. O procedimento consiste em 3 etapas:

1. Andlise da estabilidade para 4 =0, ou seja, determinar o ndimero de zeros no semi-

plano direito do sistema sem atrasos, F (S,O);

2. Andlise dos h positivos infinitamente pequenos e localizagdo de novas raizes (em

ndmero infinito), que aparecem no plano complexo;

3. Localizacio dos h positivos para os quais existem zeros da fungdo F(s,h), que se

encontram sobre o eixo imagindrio.

Nesse caso, procuram-se os valores de 7 e @ tal que F(iw,h)=0, e se continua
determinando se esses zeros tocam no eixo ou se eles o cruzam. Continua-se estudando o
movimento dos zeros, de modo a se determinar as regides de instabilidade, ou seja, quando os zeros

ndo se encontram todos no semi-plano esquerdo aberto.



Determinam-se os pontos potenciais, cruzando o eixo imagindrio e analisando o polindmio
W(w2)=A(ia))A(—ia))—C(ia))C(—ia)), de mesmo grau que A(s). Quando ndo se tem raizes
positivas de W(w2)=0, ndo existe valor de i para o qual F(iw,h)=0, e, entio, nio existe
mudanga de estabilidade. Para todo @ # 0 que satisfaz W(a)z): 0, existe um A real positivo tal

que F(iw,h)=0 dado por

cos wh = Re{— A(i“’)}, sin wh = Im{ A(i“’)}, (®)

Cliw) iw

Tem-se, portanto, que se /, (@) designa o menor valor de /4, para um valor particular de @,

tem-se um nimero infinito de valores de /& que satisfazem W(a)2 ) =0, para cada @, dados por

h=h @)+ g=0.12,... ©)
[0

O caso de sistemas do tipo neutro é mais complexo e serd introduzido na subsec¢io seguinte.

5.1.3 Sistemas com atraso do tipo neutro
Encontra-se na literatura ([5]) subclasses de sistemas neutros:
I. Somente um atraso no denominador:

Quando (3) € representado por

q,(s) (10)

po(s)+ py(s)e™

G(s):

. i . Pols) . ,
seja o real ndo nulo & = hm‘s‘_m T , encontram-se 0s seguintes casos:
pi\s

a. |a| <1, para o qual G(s) tem um ndmero infinito de pélos instdveis, assintdticos a uma

o1

linha vertical Res = —10g7 no semi-plano direito, e entdo G(s) ndo pode ser H (Cw )

10



b. |a| >1, para o qual os pélos de grande médulo de G(s) sdo assintdticos a uma linha

vertical estritamente no semi-plano esquerdo e, entdo, G(s) tem um ndmero finito de

polos instaveis, e se ela ndo tem nenhum, entdo G(s) € H_;

c. |a|=1, para o qual os pSlos de G(s) sdo assintSticos ao eixo imagindrio.

No caso que |0(| =1, supondo

po(s):a+ﬁ+l+0i para |s| — oo
p,(s) s s’ s

para a, fe y constantes, o sistema apresenta o seguinte comportamento:

an

2
a. Se L4 > ’B— , 0 sistema tem um ndmero infinito de pdlos instdveis;
o

2
b. Se 7 < ﬁ—, o sistema tem um nidmero infinito de pdlos estdveis. Ele ndo pode ter um

nimero finito de pdlos instdveis, e se ele ndo tem nenhum, entdo G(s) é H_ se e

somente se deg(po )= deg(q0)+ 2;
2
c. Se 7 ’B— a condicdo deg(po)z deg(q0)+ 2 continua necessdria a estabilidade do
o

sistema.
II. Caso geral

Para o caso de vdrios atrasos, (3), para deg(p0 (s))=m, reagrupam-se os coeficientes do

denominador em s”, tendo o polindmio p;' + pl"e™™" +...+ p”e " . Efetuando uma mudanca de

varidveis (e’ = X ), se a fungiio ndo tem zeros em Res >0 (equivalente ao fato que X ndo tenha

polos no circulo unitario), entdo G(s) tem um nimero finito de pélos instaveis.

5.2 Fatoracao coprima e fatores de Bézout para sistemas com atraso

Dado (3) e (4), para sistemas do tipo retardado, existe uma fun¢do racional r(s), tal que

11



VR
>
(IS
—_
|2}
N—
=
—_
[}
N—

Jé uma fatoracdo coprima de G sobre H_ (veja introducdo em [17]). No caso que

h, (s) e h, (s) ndo contenham mais que J, zeros instdveis comuns, entdo r(s) pode ser tomado como

AL ) z 2 21: . A
um polindmio, como r(s)=(s+1)". Isso também é vélido para sistemas neutros que tém um

nimero finito de p6los em {Res > —a}, onde a >0.
A aproximacdo pela fatoracdo coprima dos sistemas com atraso ¢ uma boa aproximagio

segundo H _ (ver Corolario 5.3 de [15]).

5.3 Aproximacoes de sistemas com atrasos do tipo ‘“Dead-time”

O operador atraso € um operador de decalagem fundamental em H,, designado por §, e

definido como (Sh fls)=e™f(s), fe H,. Em [12], encontram-se os operadores de Kautz,

Laguerre e Padé-2. Utiliza-se a aproximag@o de dimensdo finita Padé-2, a qual € uma decalagem

multipla do tipo Kautz de multiplicidade 2n, dada por
n 12
hs 1(hsY (12)
I-—+—-| —
2n 3\ 2n

hs 1(hs)
I+ —+-| —
2n 3\ 2n

Seja o sistema com atrasos do tipo “dead-time” G(s)=e™R(s), onde h>0 e R(s)#0 é

S}()")f= f. feH,,

uma func¢do de transferéncia racional estdvel e estritamente propria com grau relativo m, [12] d4

o 13
|G-swR| :max{O(n ; }o(n—“)}. )

Padé-2 apresenta, entdo, uma aproximagdo H_ de boa ordem (em comparagdo a uma

aproximagcdo racional de ordem O(n - )) e de facil implementagao.

O teorema 4.2 (ver [15]) fornece os erros da aproximagao dos p6los. Supondo que G(a) =0,

onde G € analitico com |G(s)| < M para |s - a| <R, eque G"(a)é a primeira derivada que nao se
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anulaem a, e que S>0e 0< 0 <R, sdo tais que

S"EM (@) ppem
lG-sWR| <p< p )I_R(R—a)'

S,(f)R tem, portanto, m zeros a, ,, ...,a, ,, oM |ak!l. - a| < J para cada i.

(14)

13



6 Definicao da solucao

6.1 Definicao das funcionalidades

As qualidades definidas como essenciais, durante o desenvolvimento do programa, sdo a
portabilidade, a flexibilidade, a facilidade de utilizagdo e a validade dos resultados.

Para assegurar a portabilidade, todo o programa foi escrito em cédigo Matlab, escolhido em
detrimento do Scilab, pela maior riqueza das rotinas de interface.

Para a facilidade de utilizacdo, de um lado, pensou-se em um programa user friendly. Por essa
razdo, foi introduzida uma interface intuitiva, convivial e ricamente comentada, que guia o usudrio
através da listagem de mensagens, que ilustram a natureza do sistema. De outro lado, para a
facilidade a entrada de dados e para a recuperagio de resultados de uma instincia do programa,

integrou-se a leitura e escrita em um arquivo texto, results. Esse arquivo mantém os dados — atrasos

e oA n . ~ h1 (S )
y, e B, polindmios p, (s) e g, (s), o pardmetro £ e as normas H_ das aproximacdes — 5 ©
(s + 1)
hz(s) . Slos instévei d SEANCi terior d ilizad
W’ assim como os polos instdveis — de uma instincia anterior do programa, utilizados na
s+

préxima instancia.
Para a flexibilidade, foi determinado que o usudrio tivesse a liberdade de entrar em qualquer

sistema do tipo (4), desde que com um ndmero finito de y,, B, e de graus de p,(s) e ¢,(s).

Também, escolheu-se o parametro £, o qual € utilizado como pardmetro de parada aos cilculos de

convergéncia feitos durante todo o programa. Dado x; o valor de uma varidvel x na iteragdo i,

lx, — x| <€ (15)

Finalmente, para a validade dos resultados obtidos, trabalha-se com o caso onde existe
somente um nimero finito de pdlos instaveis, pois se utilizam aproximagdes de dimensdo finita para
aproximar os zeros instdveis de (3). Nesses casos, a execu¢do do programa € interrompida e o
motivo € exposto ao usudrio. Por sinal, ndo existe literatura disponivel sobre a dinamica da
localizag¢do de todos os pdlos possiveis, portanto, aplicou-se esse procedimento em todos os casos

de cadeias infinitas de p6los instaveis.
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Além disso, devido a perda de precisdo de Matlab, a medida que se aumenta a ordem dos
polindmios aproximados para a convergéncia da aproximagdo dos pélos instdveis, insere-se o
célculo da norma H_ da aproximag@o obtida como pardmetro de parada, assim como para a

informacdo do usudrio quanto a qualidade da aproximacao utilizada.

6.2 Rotina

Sistemas de dimensdo infinita do tipo (3) s@o aproximados por sistemas de dimensdo finita de
ordem inferior. A aproximagdo 6tima para esses sistemas, segundo H_, € a aproximagdo Padé-2,
apresentada na se¢do 6.3, a qual fornece um erro méximo dado por (13).

Pode-se aplicar aos sistemas do tipo “dead-time”, ™" R(s), onde R(s) é estritamente préprio.

Aproximam-se, dessa forma, os polindmios £, (s) e h, (s), utilizando a aproximacdo de fatores

coprimos (se¢do 6.2), com J, = max (deg p,-deg q0)+1 . Dessa forma, cada termo R,,,-e"’f“e R qie_ﬁ ”

pi(s) 9,(s) hy(s)

€ do tipo “dead-time”, com R , = ——-—¢e R =-——_—estritamente proprios. Sejam ————¢€
(s (s+1)™ (s+1)%

h, (S)

( ) 5— respectivamente D e N, reescrevem-se (3) como
s+1)7°

N (16)
G(s)— D

Aplicando a aproximagao Padé-2 sobre os sistemas do tipo “dead-time” de (16), obtém-se

N (17)
G(s)=—+
(5) D,’

que € a aproximagdo 6tima de dimensao finita, para o caso que se tem um ntimero finito de polos
instaveis. Pode-se, dessa forma, utilizar as rotinas disponiveis em Matlab e Scilab para os sistemas
do tipo (17).

Analisam-se as raizes do sistema e a norma H _ para cada nutilizado na aproximacio Padé-

2. Calculam-se as raizes de N, eD,, para o caso em que ndo se preve, na literatura, uma situagdo

com numero infinito de raizes. Para o N, , quando se tem um ndmero infinito de raizes, aconselha-
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se ao usudrio efetuar o célculo desses zeros a2 médo, enquanto se continua com o cdlculo das raizes de

D, . Esse procedimento € encorajado, de forma a evitar raizes comuns entre o numerador e o

denominador, uma vez que o sistema pode apresentar uma dindmica nfo prevista na literatura.

Apresenta-se, aqui, somente o procedimento para D e D, , pois 0 mesmo procedimento €
utilizado para N e N, . Desse modo, calculam-se as raizes de D, para a iteragdon . Os célculos sdo

interrompidos uma vez que se verifica que a norma relativa (18) entre duas iteracdes consecutivas

ou a diferenca méxima entre as raizes (19) € inferior a €, dado k o nimero de raizes.

\D-D,| (18)
H.

—< £

D

H.

mkax|xn,k - xn_l,k| <€ (19)

O procedimento ideal é de parar pela convergéncia da norma H_, que contabiliza a
convergéncia da aproximag¢@o em todo o semi-plano direito. Entretanto, o critério de convergéncia
dos poélos é, também, adequado, pois se tem uma interdependéncia entre as localizagdes dos pélos e

a aproximacao 6tima, segundo H _ (veja secdo 6.3, teorema 4.2 de [15]).

6.3 Descricao do programa

O programa foi estruturado em uma organizacio recursiva, para obter beneficios da semelhanca
entre o denominador e o numerador, quanto a entrada de dados e ao seu tratamento na leitura e
escrita no arquivo results, a aproximacdo por Padé-2 e a fatoracio coprima. O programa apresenta
uma rotina principal recursiva, que faz a interface grifica e a sincronizacdo entre as diversas partes
do programa.

A partir da inicializag@o, tem-se a leitura dos dados da itera¢do anterior, estocados no arquivo
results. O programa segue pedindo valores utilizados na iteracio presente. Comeca-se com o pedido

de épsilon, seguido da inicializagdo do denominador h, (s) pela entrada dos atrasos 7, e dos
polindmios p, (s). Verifica-se a presenca de 7, =0, sem a qual se reinicializa o procedimento. Em

seguida, realiza-se a similar inicializacdo do numerador, pela entrada dos atrasos S, e dos
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polindmios g, ().

Ap6s a entrada completa de dados do sistema na inicializagdo, segue-se com a rotina calcul.m,
onde se comeca a identificacdo do tipo de sistema, entre sistemas do tipo retardado ou sistema do
tipo neutro. O programa é, dessa forma, subdividido em dois grandes grupos, o que € utilizado para
efetuar a triagem de casos particulares, ji estudados na literatura disponivel (veja capitulo 6).
Definem-se, assim, os intervalos para os quais o programa agird — func¢des de transferéncia com um
ndmero finito de pdlos instaveis.

Para sistemas do tipo neutro, o programa é guiado pelas consideracdes da secdo 6.1.3. Assim,
distingue-se a presenga de um ou varios atrasos e realiza-se o calculo de @, f e ¥ (pela rotina
calcul-beta-gamma.m). Sempre expondo a situacdo do sistema ao usudrio, o programa ¢&
reinicializado quando se encontra no caso de infinitas raizes instiveis, ou quando nio se tem
exponencial no denominador ou, ainda, se o sistema nao é préprio.

Realiza-se, enfim, o célculo dos pdlos, o que € feito seguindo o procedimento descrito na se¢do
7.2. O procedimento, descrito a seguir, é executado sempre para o denominador e é, também,
executado para o numerador, quando este ndo apresenta infinitas raizes instaveis.

O pardmetro J,da fatoragdo coprima € encontrado e segue-se com a aproximacao Padé-2 dos

sistemas do tipo (16), com ajuda da fun¢ido approx-pade.m. Encontra-se o grau n da aproximacgao,
tendo em conta a convergéncia, seja das raizes, seja da norma relativa, conforme descrito na secio

7.2. No caso em que se calculam as raizes de N,, interrompem-se os cdlculos quando N, e
D, apresentam raizes comuns ou muito proximas (de distancia inferior a £), uma vez que nio se

pode prever o comportamento do sistema.

Existem casos de infinitas raizes instdveis, ndo previstos na literatura disponivel. Nesses casos,
a aproximacdo por raizes ou pela norma relativa ndo converge. De fato, quando se aumenta o grau
n, faz-se convergir as raizes de baixo mddulo absoluto. Entretanto, nem todas as raizes obedecem a
natureza assintética vertical da localizagdo esperada.

Matlab apresenta alguns erros também, uma vez que se trabalha com graus superiores a 65,
quando se utiliza um unico atraso igual a 1. Esse valor diminui quando se aumenta a magnitude e o
nimero de atrasos presentes. Desse modo, limita-se o loop de convergéncia quando n>50 e
adotam-se raizes com modulo absoluto inferior a 100.

Algumas rotinas auxiliares s@o utilizadas para o tratamento e apresentacdo de polindmios, para

o fornecimento da aproximacdo Padé-2, uma vez que a fungdo disponivel em Matlab ndo é
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programada para qualquer que seja a entrada n e h. Também, escreveu-se uma rotina que realiza a
manipulagdo e transformacdo de varidveis do tipo ‘tf” em uma varidvel do tipo ‘sym’. A rotina
csort.m foi obtida no site oficial de Matlab e efetua a organizacdo de vetores por um parametro
escolhido (‘real’, ‘complexo’ ou ‘abs’).

A rotina norma.m foi concebida para calcular a norma H_ em Matlab, para sistemas do tipo
(3), fornecendo uma ajuda ao usudrio, através de graficos. A rotina divide o intervalo de cdlculo e
auto-refina seu passo sobre o eixo imagindrio, enquanto o passo é maior que &. E, portanto, uma
rotina de custo em tempo proporcional ao £ utilizado.

Testes foram realizados e a rotina mostrou-se confiavel. Por [12], foram realizadas as
aproximacdes de Laguerre, Kautz e Padé-2 propostas e os erros H _ foram calculados. Verificou-se a
correspondéncia entre o artigo e os resultados obtidos por Laguerre e Kautz. Devido as diferencas
encontradas por Padé-2, os cédlculos foram refeitos, auxiliados por métodos graficos, e consultou-se

o autor do artigo. Pela andlise gréfica e pelo cdlculo da norma H_, os resultados obtidos pela

w>
rotina, aqui desenvolvida, mostraram-se corretos.

Finalmente, retornam-se os pdlos encontrados a rotina principal e procede-se escrevendo os
polos no arquivo results e apresentando duas janelas com os pdlos do sistema e com o grafico dos
polos, efetuado por uma rotina especifica. O programa espera que o usudrio toque uma das janelas

para terminar a execugao.
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7 Validacio da ferramenta
7.1 Comparaciao com resultados da literatura

O artigo [15] calcula um exemplo numérico que provém na verdade de [9] e [8]. Adotou-se o
procedimento descrito no capitulo 7, testando esse exemplo no programa realizado. Verificou-se
uma boa correlacdo entre os resultados obtidos e aqueles fornecidos na literatura. Apresenta-se, a
seguir, toda a execug@o para esse caso especifico.

Os pdlos instaveis “exatos”, calculados em [8], sdo 5.002224 e 5.999994. Em [9], estimou-se a
parte instdvel de G, utilizando uma transformada rdpida de Fourier a 2048 pontos e aproximando Gg
por um sistema de 15* ordem, obtendo-se os pélos aproximados 5.0035 e 5.9981. Os melhores
resultados de [15] sdo os polos aproximados 5.0026 e 6.0000, obtidos para grau n = 4 de Padé-2.

A funcdo G(s) em questdo é a fungdo a seguir.

20(6¢ > +2¢™ —6) (20)
65> + (60 =27 —66)s— (27 +30e 7> —12¢™* —180)

G(s)=

Ap6s a escolha de &£, entra-se com os atrasos ¥, € os polindmios p,(s) do denominador,

seguidos dos atrasos S, e os polindmios ¢, (s) do numerador, como presente na tabela 1.

Atrasos Polindmios
Denominados Yo = Po(s) =657 — 665 +180

7 =1 p,(s)=-2s+12

V.= p,(s)=6s5s-30

Y, =3 py=-2

Numerador By = q,(s)=-120

Bi=1 q,(s) =40

B, = q,(s) =120

Tabela 1: Atrasos e polindmios de G(s).

Escolhendo & = 0.001, o programa esclarece que se trata de um sistema do tipo retardado e,
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através de uma mensagem de erro, que o numerador tem infinitas raizes instdveis. O numerador

constitui um sistema neutro com vdrios atrasos. Efetuando a mudanca de varidvel ¢ = X",
obtém-se a equacao

hy(s)=20(6e +2¢ —6) — h,(X)=120X"+40X —120 1)
que apresenta as raizes 0.8471270883 e -1.180460422, sendo uma contida no circulo unitirio, o que
confirma a presenga de um numero infinito de raizes instaveis (ver secdo 6.1.3). O numerador
apresenta esse comportamento para qualquer que seja o valorde €€ R.

O programa néo continua com o célculo das raizes do numerador, mas somente com o cdlculo
das raizes do denominador. Entretanto, o usuario € aconselhado a efetuar a mao o calculo das raizes
do numerador, de modo a evitar o caso de raizes comuns ou muito proximas entre o0 numerador e o
denominador.

Utilizando os métodos de resolugdo das funcgdes analiticas ([11]), seja e¢* = w, a solucdo da
equagdo é

s =log|w|+i argw. (22)

Dessa forma, as raizes do numerador sdo -0.165905 e 0.165905 + (3.141593 + 2k)i, ke Z .
Verifica-se a presenca de um ndmero infinito de raizes, como previsto na literatura. Prossegue-se
comparando as raizes do denominador, ap6s a execucido completa do programa.

O programa continua com o cdlculo das raizes do denominador. Apds verificar que o
denominador tem um nimero finito de raizes, o programa fornece D(s) e Dy(s). A seguir, a
aproximacdo D(s) € apresentada. Entretanto, ndo se apresenta a aproximacgdo D(s), uma vez que se
constitui como uma aproximacdo com numerador e denominador de ordem 35, com coeficientes de
ordem 30.

65> — 665 +180 N (2s5+12)e™ N (6s —30)e™* _ 2e7 (23)
(s+1)° (s+1)° (s+1)° (s+1)°

D(s) =

O loop ¢ interrompido pela convergé€ncia dos pdlos, quando n = 4. A norma H_ relativa da
aproximacdo do denominador é 0.0012, sendo a norma |D - Dk| , =0.1850. Os pdlos

aproximados do sistema sdo 5.002273 e 5.999986, que sdo aproximacdes melhores que aquelas

fornecidas por [15] e [9]. O tempo de cdlculo é de 501.40s. Verifica-se, dessa forma, que nao se tem
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raizes em comum ou muito proximas entre o numerador e o denominador, 0 que ndo invalida as
aproximacdes feitas.

O grafico dos pdlos do sistema, fornecido pelo programa no final da sua execugdo, assim como
as outras janelas abertas pela interface durante a execugéo, encontram-se no Anexo B.

O pardmetro de parada foi a convergéncia dos pélos e ndo a convergéncia da norma H,

relativa. Com algumas pequenas mudangas no programa, € possivel realizar simulagdes utilizando
um Unico parametro de parada, quer seja quanto a norma relativa, quer seja quanto a convergéncia
das raizes, sempre com € =0.001. A comparagdo com o caso anterior € dada na tabela 2. Utilizando
somente as raizes como parametro de parada, duas possibilidades apresentam-se: com (*) e sem

(**) a comparacdo final da norma H _ relativa. Verifica-se, com essa separagdo, que o principal
responsdvel pelo tempo de cdlculo € o célculo da norma H_ . Este cdlculo, dado por um loop que

auto-refina seu passo enquanto este for superior a £, € incorporado ao loop de convergéncia de n,

aumentando o custo total em tempo de cdlculo do programa.

Critérios de Parada Raizes Tempo de cadlculo n | D— Dk|Hm
1Dl,,.

Norma e raizes 5.002273 501.40s 4 0.0012
5.999986

Somente norma 5.002257 666.34s 5 8.3564%10™
5.999988

Somente raizes 5.002273 186.36s (*) 4 0.0012
5.999986 10.14s (*%)

Tabela 2: Comparag@o dos resultados para diferentes critérios de parada.

Todas as trés modalidades citadas acima sdo rotinas com implementacdo possivel e fornecem,
para o caso das equagdes com um nudmero finito de raizes instdveis, melhores aproximacdes que
aquelas fornecidas na literatura.

Outros testes foram realizados para as trés modalidades, com o objetivo de avaliar a influéncia
do pardmetro £ na performance do programa.

O parametro dif € o pardmetro considerado quando se comparam as raizes. E dado por
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). Além disso, conhecendo os pdlos exatos, dados por [8], tem-se o

max(|pl,n - pl,n—l ’|p2,n - p2,n—1

parametro dist, dado por \/(pm —5.002224)2+(p2’n—5.999994)2. Tem-se, também, a norma

relativa H_ (18), que é representada por dif2.

Para a terceira modalidade, onde testes de convergéncia foram feitos somente com as raizes de

iteragcdes consecutivas, efetuaram-se testes para os dois casos explicados acima (com (*) e sem (**)

a comparagao da norma no final da execugdo). Os resultados encontram-se na tabela 3.

£ dist Raizes Tempo(*) | Tempo(**) n dif2 dif
10" | 5.671868E-04 5.002273 145.57 8.10 3 1.7624E-03 | 1.2723E-02
5.999986

107 | 5.009629E-05 | 5.002004454 192.37 9.44 4 1.1563E-03 | 5.3145E-04
6.000516973

10-3 | 5.009629E-05 | 5.002273374 239.90 12.87 4 1.1564E-03 | 5.3145E-04
5.999985522

10-4 | 3.324945E-05 | 5,002256739 372.13 11.37 5 8.3564E-04 | 1.6635E-05
5,999988194

10-5 | 2.472935E-05 | 5,002248609 606.18 11.86 6 | 6.3366E-04 | 8.1297E-06
5,999991562

10-6 | 1.845368E-05 | 5,002242447 1484.02 16.50 9 | 3.3770E-04 | 9.0667E-07
5,999993491

10-7 | 1.720850E-05 | 5,002241207 | 4060.62 31.24 14 | 1.0740E-04 | 8.7484E-08
5,999993798

10-8 | 1.710352E-05 | 5,002241103 | 4144.23 44.86 16 | 0.0000E+00 | 4.3661E-08
5,999993822

Tabela 3: Resultados de simulagdes para a modalidade “Somente raizes”.

Verifica-se, pela andlise da tabela 3, o que ja se esperava: as raizes dependem unicamente do
grau n, entretanto, o tempo (*) ndo € somente dependente de n, mas, principalmente, de €, utilizado
como valor de parada nos testes efetuados em todo o programa.

Verifica-se que, conforme se refina &, obt€m-se raizes mais proximas as raizes exatas (veja
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raizes e dist), assim como a diminuicdo de dif2 e dif. Ocorre, portanto, o comportamento assintético
convergente assim que se aumenta o grau 7.

Verifica-se, também, uma perda da precisdo de Matlab para € superiores ou iguais a 10°®.
Analisando dist, verifica-se que a norma dif2 ndo poderia ser nula. Isso acontece uma vez que se
trabalha com situagdes criticas limites, utilizando polindmios de grau muito alto (superior a 100),
com coeficientes de alto médulo (ordem superior a 10'*%), a0 mesmo tempo em que se trabalha com
valores de £ de baixo médulo.

Efetuando agora simulagGes para o primeiro caso, com a andlise simultdnea da convergéncia de

raizes e da norma H _ relativa, obtém-se os resultados da tabela 4.

£ 10" 107 10 10* 10” 10°
dist 2.1221E-01 | 1.3284E-02 | 5.0096E-05 | 3.3249E-05 | 2.4729E-05 | 1.8454E-05
Raizes | 4.869814 4.989282 | 5.002273374 | 5.002256739 | 5.002248609 | 5.002242447
5.834158 6.002986 | 5.999985522 | 5.999988194 | 5.999991562 | 5.999992491
Tempo 58.56 147.43 545.89 926.58 1632.67 3814.66
n 1 2 4 5 6 9
dif2 1.0908E-02 | 3.5261E-03 | 1.1564E-03 | 8.3564E-04 | 6.3366E-04 | 3.3770E-04
dif 1.6584E-01 | 1.6883E-01 | 5.3145E-04 | 1.6635E-05 | 8.1297E-06 | 9.0667E-07

Tabela 4: Resultados de simulagdes para a modalidade “Norma e raizes”.

Analisando a tabela 4, verifica-se que o programa s6 foi suspenso, pelo critério da norma,
quando € = 10" e & = 107 Para todos os outros casos, o critério empregado foi a distincia
maxima entre as raizes de iteragdes consecutivas. Nota-se, assim, que a localizagdo das raizes
converge mais rapidamente. Tem-se, dessa forma, um tempo de cdlculo mais elevado que para o
caso anterior, uma vez que se calcula a norma H_ em cada iteracao.

Verificando dist e as raizes, nota-se uma igualdade entre os valores das tabelas 3 e 4, salvo os
casos€ = 10" e £ = 107 Nesse caso, o programa foi suspenso pelo critério da norma e foram

obtidos valores mais elevados de dist e do tempo de cdlculo que da tabela 3, devido as piores

aproximagdes das raizes.
Considerando somente a norma relativa como parametro de parada, ndo é possivel testar para

£>107", uma vez que Matlab apresenta erros nas rotinas do Symbolic Math Toolbox, devido a
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presenga de inteiros de médulo muito alto.

Para o valor £ = 107, os resultados sio apresentados na tabela 2. Os resultados obtidos ndo sdo
excepcionais, pois o procedimento € suspenso no grau #» = 5, mas se tem uma simulagdo com alto
custo em tempo e recursos informéticos. Dessa forma, percebe-se que esse critério, ndo utilizado no
programa, nao € um bom critério de parada.

Simulagdes foram efetuadas para se verificar a relacdo entre a localizac@o das raizes e o grau n.
Os resultados encontram-se na tabela 5. Os outros critérios, empregados nas outras tabelas, ndo
foram considerados, porque esse ndo era o objetivo dessas simulagdes. Além disso, o tempo
maximo de célculo € 42.94s, insignificante em comparagdo com os outros valores presentes nas
tabelas 3 e 4.

A qualidade das raizes aproximadas estd em relacdo direta com o grau n empregado na
aproximacao, o que ja se tinha concluido anteriormente. Verificou-se uma convergéncia exponencial
das raizes aproximadas, dado de forma bastante lenta para n = 3. Tém-se boas aproximacdes das

raizes a partir de n = 3.

n 2 3 4 5 6
dif | 1.6880E-01 | 1.2700E-02 | 5.3145E-04 | 1.6635E-05 | 8.1297E-06
dist | 1.3284E-02 | 5.6719E-04 | 5.0096E-05 | 3.3249E-05 | 2.4729E-05
n 7 8 9 10 11
dif | 3.5428E-06 | 1.7127E-06 | 9.0667E-07 | 5.1579E-07 | 3.1083E-07
dist | 2.1103E-05 | 1.9368E-05 | 1.8454E-05 | 1.7935E-05 | 1.7623E-05
n 12 13 14 15 16
dif | 1.9631E-07 | 1.2892E-07 | 8.7484E-08 | 6.1058E-08 | 4.3661E-08
dist | 1.7426E-05 | 1.7296E-05 | 1.7209E-05 | 1.7141E-05 | 1.7104E-05

Tabela 5: Relagdo entre n e a localizacio das raizes.

Essa caracteristica da convergéncia foi percebida desde as tabelas 3 e 4, pela andlise de dif, dif2
e dist. Percebeu-se uma queda significativa para os valores iniciais de n, seguido por uma
convergéncia lenta para valores superiores. Existem bons compromissos entre a qualidade das
raizes aproximadas, tempo de cdlculo e custo em recursos informaticos para os valores £ = 0.001 e

£ =0.0001.
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Finalmente, conclui-se que as aproximagdes e o procedimento, descritos no capitulo 7,
fornecem as melhores aproximacdes de polos, para o exemplo em questio, que aqueles da literatura.
Esse é um exemplo genérico de um sistema com atrasos, com um numero finito de raizes instaveis.
Para esses sistemas, a qualidade das aproximagdes dos polos é garantida pela utilizacdo da

aproximacdo Padé-2, 6tima no sentido H .

7.2 Comparacao com os softwares livres existentes

Tré€s softwares de ajuda a localizacdo de raizes de uma funcgao transcendente foram estudados:
I. DDE-Biftool,
II. Proj2D;
L. IntLab.

DDE-Biftool, que resolve por bifurcagdo, € um software complexo a utilizagdo. Foi abandonado
na andlise realizada, pois trabalha no dominio temporal, enquanto que esse trabalho utiliza o
dominio das freqii€ncias.

Proj2D e IntLab trabalham com o método de cdlculo por intervalo. IntLab é um Matlab toolbox
que suporta intervalos reais e complexos aplicdvel em vetores e matrizes. Na sua descrigdo, diz ser
concebido para apresentar execugdo e implementagdo muito rdpidas, com verificacdo do resultado.

Entretanto, para ser um toolbox, se configura como um ambiente de programacio, no qual se
deveriam escrever os algoritmos. Dever-se-ia, entdo, reescrever o programa, utilizando as fungdes
desse foolbox, o que ndo era ideal e foi, entdo, abandonado.

Proj2D ¢é um calculador desenvolvido para caracterizar a proje¢do, em duas dimensdes, de um
conjunto definido por um sistema de restri¢cdes. Esse software, desenvolvido por Massa Dao, Xavier
Baguenard e Luc Jaulin, utiliza o cédlculo por intervalos e a propagagdo de restri¢cdes, permitindo,
segundo os autores, obterem-se resultados garantidos, com os tempos de cdlculo muito sensiveis ao
nimero de parametros. Proj2D ja foi utilizado para a andlise da estabilidade de sistemas com
atrasos. Esse foi o software escolhido para efetuar as comparagdes com o programa desenvolvido.

Muiltiplos testes foram realizados com Proj2D e cp_2, tendo como base o exemplo numérico de
[9], para o qual se conhecia a localizagdo exata dos pélos instaveis. As equacdes e os resultados

encontram-se no Anexo C. A rotina para o pré-tratamento das equagdes, para a utilizacdo dos
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softwares, encontra-se no Anexo D.

Para o exemplo de [9], verifica-se que os dois métodos apresentam uma performance
equivalente. Justificado pela analise dos resultados presentes no Anexo C, verifica-se uma
superioridade do programa desenvolvido neste trabalho. Mesmo sofrendo uma pequena perda de
precisdo, conforme se aumenta o grau do polindmio analisado, este método sempre permitiu a
localizag@o de todas as raizes, o que nao acontece com Proj2D.

Além disso, ndo analisando a norma H_, o que € perfeitamente aceitdvel, uma vez que se

s
trabalha com um numero finito de raizes instdveis, cp_2 apresenta um tempo de cdlculo muito
menor que aquele de Proj2D. Outra consideracdo € a dificuldade de se analisar os dominios
fornecidos por Proj2D e a caracteristica de se fornecer grandes dominios Ambiguos, onde se sabe,
segundo os autores, que existe a0 menos uma raiz, mas nio se identifica o seu nimero.
Conclui-se que Proj2D ndo apresentou um bom desempenho nos seguintes casos:
I. Raizes longinquas da origem: a performance é perturbada, pois nao se tem a localizacdo de
todas as raizes, chegando-se ao extremo de ndo se encontrar nenhuma raiz;
II. Raizes préximas ou raizes multiplas: verifica-se uma explosdao do tempo de cdlculo e
dominios resultantes muito grandes, contendo vdrias raizes, sendo, portanto, imprecisos e

com um desempenho ruim;

III. Aumento do grau do polindmio ou dos atrasos: existe a possibilidade de perda de raizes.

Chega-se a essas conclusdes pela comparacio em relagdo ao custo de tempo, tamanho e
natureza dos intervalos, precis@o e nimero de raizes fornecidas. Descobriu-se que a implantagdo da
aritmética por intervalos de Proj2D nido utiliza arredondamentos dirigidos aos calculos em floating
point, ou seja, o arredondamento para baixo, para se calcular o limite inferior do intervalo, e o
arredondamento para cima, para se calcular o limite superior.

Isso pode apresentar problemas de confiabilidade e tempo de célculo, uma vez que se trabalha

, . . . -100 100
com numeros muito baixos ou muito altos (como e ee

). Deveria se incluir a multi-precisao,
com o célculo pelos intervalos compreendendo o outward rounding, ou seja, o arredondamento
exterior, ndo incluso em Proj2D.

Verificou-se, entretanto, uma superioridade de Proj2D quando se efetua calculos com fungdes
com infinitas raizes instdveis, pois a versao atual de cp_2 ndo é capaz de efetuar esses célculos e

Proj2D fornece aproximagdes aceitdveis para altos valores absolutos de médulos.
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7.3 Limitacoes

A principal limitagdo do programa € a capacidade de determinar bem as raizes instaveis, desde
que essas se apresentem em um numero finito. Essa limitacdo é devida a aproximagdo Padé-2
utilizada para aproximar o sistema que, mesmo sendo 6tima ao senso H_ para o semi-plano direito,
€ uma aproximacao de dimensdo finita e, entdo, incapaz de aproximar as infinitas raizes instaveis.

Em seguida, verifica-se que podem existir casos de infinitas raizes instdveis nao previstos na
literatura disponivel. O critério de parada, nesses casos, ndo é otimizado e deveria ser reformulado.
Dessa forma, podem-se ter raizes instdveis que nio sejam bem aproximadas, ainda que se
encontrem, apesar de tudo, boas aproximagdes de raizes de baixo médulo. Esse ponto nio faz parte
do ambito do programa, o qual é de fornecer aproximacdes de boa qualidade, o que ndo € possivel
para o caso de infinitas raizes instdveis, utilizando uma aproximacio de dimensdo finita. E,
portanto, um suplemento, tendo em vista a incapacidade de se identificar no comeco da execugao,
devido a auséncia de literatura disponivel.

A incorporacgdo do cdlculo da norma aumenta o tempo necessario. Deve-se admitir, a priori,
que isto ¢ uma ferramenta auxiliar na identificagdo da qualidade das aproximagdes para o caso de
um ndmero finito de pdlos instaveis, pois a aproximagdo € ja 6tima ao senso H_. A utilizacdo de
Matlab, para o calculo por loops, ndo € a linguagem mais rapida a disposi¢do. Poder-se-ia
reescrever em linguagem C. Entretanto, isso necessitaria do triplo do tempo para se escrever o
programa em Matlab por um programador expert, sendo impossivel de efetua-lo neste trabalho, em
funcao da disponibilidade de tempo.

No comeco, idealizou-se incluir o cdlculo dos fatores de Bézout e de um controlador capaz de
estabilizar o sistema. Entretanto, ndo houve tempo para programaé-lo.

Trabalha-se no programa com polindmios e grau proporcional a 2n. Tem-se, assim, que,
conforme se aumenta o grau n visando fazer convergir a aproximacao, trabalha-se com polindmios
de ordem crescente, que atingem altos valores. Matlab perde sua precisdo, conforme se aumentam
os graus do polindmio. E, portanto, uma limitacdo do software utilizado no cilculo.

Durante a constru¢do das aproximacdes, ndo houve simplificacio entre o numerador e o
denominador da aproximacdo. Assim, perde-se precisdo de resultados de Matlab, trabalhando-se

com polindmios de alto grau, sem ser necessdrio, uma vez que se poderia conseguir fazer as
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simplificagdes. Isso ndo € possivel utilizando as varidveis do tipo ‘tf’, mas somente as varidveis do
tipo ‘sym’. Dever-se-ia estudar os resultados de rotinas andlogas, como zero para ‘tf’ e solve para
‘sym’. Assegurando a mesma eficicia, o programa reteria as melhores aproximacdes de raizes,

passando todo o cédigo em ‘tf” para ‘sym’ e efetuando as simplificacdes de polindmios.
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8 Avaliacao dos resultados obtidos

Obteve-se, em uma primeira etapa, a estruturacio do trabalho, com o extensivo estudo da
literatura e esquematizagdo da rotina a ser implementada. Da mesma forma, definiram-se as
caracteristicas do programa a ser escrito, assim como se efetuou a redago das rotinas que compdem
o programa. Pequenos testes foram efetuados com equacdes bastante simples e verificou-se que o
programa respondia de forma adequada.

Em uma segunda etapa, com o programa concebido, realizou-se a validacdo e andlise do
mesmo, via realizacdo de testes. Algumas correcdes pontuais foram realizadas sobre os erros
apresentados, através da comparagdo dos resultados oriundos do programa com resultados advindos
da literatura, assim como bugs proprios ao programa, que foram corrigidos. Identificou-se, também,
que alguns softwares livres podem ser utilizados, com certa adaptacdo, para se obter resultados
necessarios ao estudo da estabilidade desses sistemas. Esses resultados foram usados para
comparag@o com os resultados fornecidos pelo programa realizado neste projeto.

Um estudo sobre as limitacdes do programa a ser realizado foi também realizado.
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9 Avaliacdo de atividades futuras

Este trabalho conta com uma algumas simplificagdes para que a determinacio de raizes seja
possivel. Essa era a definicdo inicial do escopo do projeto. Entretanto, trés possiveis
desdobramentos do projeto foram apresentados conforme se avangou no plano inicial:

I. Ampliar o acesso a toda a cadeia de pdlos para sistemas com dois atrasos, uma vez que
o programa se limita aos pélos de baixo médulo;
II. Ampliar o acesso a toda a cadeia de polos para sistemas com n atrasos;

III. Realizar um foolbox em Scilab.
Entretanto, para a realizacio do projeto da matéria PMR2550, considera-se como encerradas as

atividades com o projeto ja realizado e testado. Essas atividades listadas acima se constituem como

atividades futuras, a serem realizadas fora do escopo desta disciplina.
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10 Cronograma

O cronograma de atividades inicial foi determinado como na tabela 6, levando em conta as

etapas que constituem o projeto. O cronograma foi respeitado, mas a etapa ‘“Levantamento de

Dados” foi amplificada, gracas a necessidade para a definicdo do escopo do projeto, dada a

identificacdo dos trés desdobramentos possiveis do projeto. O novo cronograma de atividades se

encontra na tabela 7.

Semana 1 2 3 4 5 6 7 8 9 | 10 | 11
Atividade / Data 25/ | 02/ |1 09/ | 16/ | 23/ | 30/ | 06/ | 13/ | 20/ | 27/ | 04/
09 110 | 10 | 10 | 10 | 10 | 11 | 11 | 11 | I1 | 12
1) Levantamento de dados: XX | XX | XX | XX | XX | XX
discussdo de informagdes sobre
0 projeto.
2) Revisdo bibliogrifica. XX | XX | XX | XX | XX | X
3) Implementacao. XX [ XX | XX | XX | XX | XX
4) Testes e corregoes. XX [ XX | XX | X
7) Confeccdo do relatério XX XX | XX | XX | XX | XX
parcial, minuta de artigo,
monografia final, artigo e
material de apresentagdo.
Tabela 6: Cronograma inicial de atividades.
Semana 1 2 3 4 5 6 7 8 9 |10 | 11
Atividade / Data 25/ | 02/ |1 09/ | 16/ | 23/ | 30/ | 06/ | 13/ | 20/ | 27/ | 04/
09110 | 10 | 10 | 10 | 10 | 11 | 11 | 11 | 11 | 12
1) Levantamento de dados: XX [ XX | XX | XX [ XX | XX | XX | XX
discussdo de informagdes sobre
0 projeto.
2) Revisdo bibliogrifica. XX | XX | XX | XX | XX | X
3) Implementacao. XX [ XX | XX | XX | XX | XX
4) Testes e corregdes. XX | XX XX | X
7) Confeccdo do relatério XX XX XX | XX | XX | XX

parcial, minuta de artigo,
monografia final, artigo e
material de apresentagdo.

Tabela 7: Novo cronograma de atividades.
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11 Conclusao

Em comparacio com os resultados dos softwares e da literatura disponivel, o programa cp_2 é
o responsavel pelas melhores aproximacdes de raizes instidveis, uma vez que elas estejam presentes
em ndmero finito. Além disso, € o programa que apresenta o melhor desempenho em termos de
tempo de calculo, facilidade de interpretacdo de resultados e identificagdo do nimero exato de
raizes.

Isso foi possivel, uma vez que escolhida uma rotina de resolugdo, tendo como base numerosos
resultados da literatura. Efetuou-se pela combinacio das aproximagdes por fatores coprimos e Padé-
2, os quais fornecem uma aproximagdo de dimensao finita 6tima ao senso H_ para os sistemas
analisados, com um sistema correto de avaliacio de raizes, que analisa a convergéncia da
localizagcdo das mesmas, assim que da norma H _ relativa.

O programa obedece as funcionalidades essenciais definidas na secdo 7.1. E um programa user
friendly, flexivel e com resultados validos, o que foi verificado por numerosos testes, representados
por um conjunto significativo, contido no Anexo C. Um ponto extra para a flexibilidade é que,
mesmo que o programa tenha sido desenvolvido visando, principalmente, a utilizacdo para a
determinagdo da estabilidade dos sistemas com atraso, fica, também, uma ferramenta genérica de
andlise matemadtica, capaz de resolver fungdes transcendentes de complexidades distintas no semi-
plano direito.

Dessa forma, desenvolveu-se um programa que se constitui como uma importante ferramenta a
andlise e a identificacdo de sistemas com atrasos, sendo de grande importancia aos estudos de
problemas de controle robusto. O programa serd colocado em linha no mais curto intervalo de
tempo possivel para servir a comunidade de sistemas com atrasos e a todos aqueles que desejarem

resolver funcdes transcendentes.
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Anexo A: Readme

PC_2 : Approximation des zéros instables de fonctions transcendantes
pour 1l’étude de la stabilité de systémes a retards.

This is the README file which you get when you unwrap our distribution
file. This ©program enables the roots computation of transcendent
functions, for the study of delay systems.

Handling the Distribution File

The distribution file contains the source code for the program. All
distribution files are available as compressed tar files, gzipped tar
files, or as zip files. For the compressed tar files, first uncompress
and untar the file <dist>.tar.Z where <dist> is the name of the specific
distribution:

uncompress <dist>.tar.Z
gunzip <dist>.tar.gz

Then untar the file by typing
tar xf <dist>.tar

For the zip files, type the following:
unzip <dist>.zip

Generated Directory structure

The distribution files are all designed to be unwrapped in the directory
"pc_2". A distribution file also contains a few informative files like
this README file and the file 'results’. The structure of the entire
unpacked distribution file is as follows (directories):

pc_2 Top-node

cp_2/cp_2.m Main routine
cp_2/calcul.m RAuxiliary routine
cp_2/approx_pade.m Auxiliary routine
cp_2/tf2sym.m Auxiliary routine
cp_2/calcul_beta_gamma.m Auxiliary routine
cp_2/csort.m Auxiliary routine
cp_2/norma.m Auxiliary routine
cp_2/pade2_meu.m Auxiliary routine
cp_2/plot_poles.m Auxiliary routine
cp_2/print_n_d.m Auxiliary routine
cp_2/results Auxiliary file
cp_2/readme.txt Documentation

All the source code is written in Matlab code to assure portability.

Run
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Open Matlab and place in the "c¢cp_ 2" directory. Write the routine call
"cp_2' in the Command Window. It starts to show the Interface figures:

1. Enter the value of epsilon

2. Enter the delays of the denominator

3. Polynoms Pi(s) = * exp(-1T)

4. Enter the delays of the numerator

5. Polynoms Pi(s) = * exp(-1iT)

Write in a numeric type, with ’.’ instead of ’,’. Don’t leave any other

type, such as characters. You should write the arithmetic operators (+,
7 *I /I A)-

General values of epsilon are 0.001 and 0.0001. (Interface figure n°l)
You should write all the polynoms (Interface figure n°3) for the delays
written (Interface figure n°2).

The program shows error messages on account of instability. The program
displays too its states and features in the Command Window, such as the
degree n of the approximation Padé-2 and the polynoms D and Dk (as well
as n and Nk).

The program opens another figure with the graph of the poles.

The results and simulation features (epsilon, denominator delays,
denominator polynoms, numerator delays, numerator polynoms, H-infinity
relative norme and poles) are stocked in the file ’results’.

Got Problems or Comments?

If you encounter problems, would like to feed back suggestions good
ideas etc. then please send a mail explaining your problem to
mlltorquato@gmail.com
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Anexo B: Grafico de pdlos e interfaces do programa para o exemplo numérico de [15]

Apresenta-se, aqui, a execugdo do programa para o exemplo da secdo 8.2, de modo a
introduzir as interfaces encontradas durante a execucdo para um exemplo qualquer. Dessa forma,
apresenta-se o carater user friendly do programa.

A execugdo do programa comeca pela abertura de Matlab e pela indicacio em Current
Directory da pasta onde existem as rotinas que compdem o programa cp_2. Digita-se cp_2 para

executar o programa.

A préxima janela apresentada pede pelo valor de &, que serd utilizado em todos os loops do

programa, como se vé na figura B.1. O valor habitual é € =0.001.

File Edit Debug Deskiop  Window  Help
= | $ Ba @ v o | ﬁ ﬁ = | ? | |C:1Doc:umer'rts and SettingshariansBureauibisrianaippliPart 3Part Sbck_final v| E]
Shortcuts (2] Howe to Add (2] What's Mew
Workspace 7 x |[Command Window A X
': E i Entradas carregadas

Entrada da precisso utilizada nos caloculos.

Mame =~
I
J Figure 1
Ertrar o valor de epsilon
1.000000e-003
Cartits

| Current Directory | wjor
4\ start

Figura B.1: Insercdo do valor de €.

Em seguida, comeca a inicializagdo do denominador. Pode-se acompanhar o estado do

sistema pela andlise do Command Window. A proxima janela pede os atrasos do denominador
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(figura B.2).

Entrar os retardos do denominador :

0123

Somente valores numernicos!

Cortiruc,

Figura B.2: Insercdo dos atrasos ¥, do denominador.

Para cada atraso p, incluido, deve-se introduzir um polindmio p,(s) na janela mostrada

pela figura B.3. Para o sistema incluido, no exemplo numérico de [15], o numerador apresenta
infinitas raizes instaveis. Desse modo, o programa indica, por uma mensagem de erro, o estado do
sistema e explica que o programa ndo continua o cdlculo das raizes do numerador. Isso é somente
um dos casos possiveis, onde o programa mostra mensagens de erros ou a explicacdo ao usudrio. As

outras mensagens possiveis ja foram explicadas na descri¢do do programa.

38



) Figure 1

PO(s) = | B*s"2-66*=+180 *exp(-0T)

Cortinue

Figura B.3: Insercdo dos polindmios p,(s) do denominador.

O programa continua com o célculo das raizes do denominador. Como as aproximacdes de n
e Ni ndo foram efetuadas, t€ém-se somente apresentados D e Dy. A apresentacdo dessas saidas, entre
outras, é verificada na figura B.4.

Na finalizacdo do programa, quando se tem raizes instaveis, mostram-se duas janelas: uma
com o grafico dos polos instdveis (figura B.5) e outra com os valores numéricos calculados dos

polos, divididos em partes reais e imaginarias (figura B.6).
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Shorioubs | F] Howrto Add [ Wehal's Maw
Wiorkspare LI arwnand Windoms ¥
5 E P s | " |Enceadas  carcsgadas B
- o Encrads da precissa  urilisasds mos  caloulas.

Inicializacas ! Encrads dd Denominadse,

Inicializacas  Encrads do Numecsdoe,

Siscemsa Cim ATEaSG .

Humersdse com infinitas  raiges  inscauals,

Humeradat = denominader dividides per factorimarad coprims, rcespsctivemsnte Nis] = O[=)1.
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Figura B.4: Estado do sistema e aproximagdes.
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Figura B.5: Gréfico dos pélos instaveis.
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J Figure 1

Polos = | (5.002273e+000,0) (5. 9%8586=+000, )

Togue para acabar o programa.

Figura B.6: Valores numéricos dos pdlos.
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Anexo C: Comparaciao com Proj2D — Equacoes e resultados

Testaram-se o programa e o software Proj2D sobre um conjunto de func¢des representativas,

de modo a se avaliar as performances dos dois programas para casos diferentes: polinomios de

graus altos, com grandes atrasos, com raizes multiplas ou proximas, com raizes afastadas ou com

raizes complexas.

Utilizou-se, como base, o exemplo numérico de [9], chamado a seguir por fg,, j4 plenamente

estudado na secdo 8.1. Mudangas foram feitas, multiplicando por diversos polindmios. Depois,

efetuou-se uma mudanca na funcio fg,, obtendo a funcdo fg,"*,

para o estudo de outras fun¢des compostas.
Sejam
fo. =65 +(6e —2¢™ —66)s—(2¢™ +30e> —12¢7 —180)
ol = 652 4 (60 —2e —66)s — (306 —12¢7 —180)
as fungdes testadas sdo:
fl = [(S_l)*(s_s)*qu]_l
=[(s—1)* 51"
=[(s=1)*(s=15)* £, ]"
(S 1) (S_3)*qu]_l
= [(s - 150)* (s - 20000)* f,,, |
[ mod]
— [ S 1 mod] 1
fi =[(s—1)*(s—15)* il
fo= [(S—l)*(s _5)* Gn:)d]_l
_ [ S _ mod]
fi= [(s ~3)% (s —20)% (s ~150)* £ [

fo =|(s = 2000)% £ o]

a qual serd utilizada como base

€

(C.1)

(C.2)

(C.3)
(C.4)
(C.5)
(C.6)
(C.7)
(C.8)
(C.9)

(C.10)

(C.11)

(C.12)

(C.13)

(C.14)
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fiy =657 + (66 =27 —66)s =2 +(Bs—T)e ™ =2 +(3ds—12)e ™™ +13¢ 5] (C.15)

fi, = [(s2 —6s +13)* feu ]‘l (C.16)

As equacdes foram escolhidas, no modo descrito acima, porque se conhecem os p6los exatos
de fgy, dados por [8]. Inclui-se a multiplicacdo por fatores que fornecem facilmente raizes bem
estabelecidas, a fim de verificar o desempenho dos programas para encontra-las.

Para cp_2, os testes foram realizados com £ = 0.001 e ndo incluem a verificagdo da norma
H_ . Em Proj2D, os testes sdo realizados com £ = 0.01 e € = 0.001. Trabalha-se com £ = 0.001
quando se trata de um caso critico (intervalo sem identificacdo de raizes ou intervalo com vdrias
raizes).

Dessa forma, uma vez que se sabe a localizag@o das raizes e que se t&ém os resultados das
simulagdes anteriores com um valor maior de &, tenta-se utilizar os dominios inicias menores em
torno do valor das raizes com um valor menor de €.

A comparagdo € realizada tendo em conta as raizes encontradas e o tempo de célculo. No
caso de Proj2D, apresentam-se as raizes encontradas pelo intervalo que as contém e pela natureza
do intervalo (entre dominios Solucdo e Ambiguo).

As rotinas em Maple, para se encontrar as equagdes a serem introduzidas nos dois
programas, encontram-se no Anexo D, para a funcio f;.

Os intervalos representados acima foram reagrupados de modo a facilitar a interpretacio dos
resultados e a sua demonstracdo. Geralmente, o resultado de uma simulacdo em Proj2D é de
interpretacdo muito mais dificil. Os intervalos foram reagrupados em favor da seguranca.

Verifica-se, assim, que cp_2 fornece resultados de interpretacdo muito mais facil. Entretanto,
Proj2D fornece um dominio ambiguo, mas € claro que existe a0 menos uma raiz nesse intervalo (de
acordo com os autores). Entretanto, ndo se explica o ndmero de raizes dentro do intervalo. Isso ndo
é desejado para a identificagdo de um sistema a ser controlado.

Analisando os p6los encontrados por cp_2 para as funcdes de f] a fs, verifica-se que o erro
maximo foi de 0.000049. Além disso, o programa é capaz de encontrar todos os pélos, mesmo em
casos extremos, como os pélos muito proximos ou os poélos longinquos. Esse comportamento é
verificado junto aos tempos de calculo muito baixos em relagdo aqueles apresentados por Proj2D.

A caracteristica mais importante, em relacdo ao tempo de célculo, € que cp_2 apresenta um

comportamento relativamente uniforme em relacdo a presenca de graus diferentes e a casos
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diferentes de distribui¢do dos polos: pdlos préximos, pdlos distantes da origem. Isso ndo é
observado em Proj2D, onde a presenca de pdlos multiplos ou préximos aumenta muito o tempo de
célculo. Esse comportamento € acompanhado da localizagdo de um dominio de grandes dimensoes,
ndo sendo, entdo, eficaz, quando o objetivo é determinar os pdlos do sistema.

Tomou-se a liberdade de modificar a funcdo da literatura, fg,, devido a qualidade dos pdlos
encontrados pela funcdo fg, e a correspondéncia entre os p6los encontrados pelos dois programas.
Desse modo, considera-se que o programa tem um comportamento e um desempenho independente
dos fatores criticos considerados nos primeiros testes. Deseja-se, agora, testar a influéncia do
nimero de atrasos e dos seus médulos.

Dessa forma, as simulagdes foram realizadas com as funcdes fs a f13. Considera-se que os
resultados de cp_2 sdo boas aproximacdes dos pdlos do sistema, enquanto se tem um nimero finito
de raizes instdveis. Verifica-se que os dois programas apresentaram, para fs, 0 mesmo nidmero de
polos, com as localizagdes respectivas coerentes. Isso foi pego como uma prova do desempenho de
dois programas para essa funcdo. Verifica-se, também, um tempo de célculo bastante baixo para
Proj2D, enquanto ndo se tem raizes multiplas e se tém atrasos mais baixos.

Multiplica-se, entdo, fs por fatores com as raizes facilmente determinadas, para continuar a
avaliagcdo das performances dos programas. Pela andlise de fg, verifica-se que a presenca de raizes
longinquas penaliza o desempenho de Proj2D, uma vez que se perde a precisdo e o tamanho dos
intervalos fornecidos, unidos a uma explosao do tempo de calculo.

Pela andlise de f}; e fj,, verifica-se a presenca de podlos longinquos, ndo reconhecidos por
Proj2D, e que podem até retirar o reconhecimento de outras raizes mais préximas a origem (f}2). Ja
para a funcdo fi3, criada aleatoriamente com o objetivo de analisar o desempenho dos programas
com presenca de grandes atrasos, ndo se verifica nenhuma correlacio entre os resultados dos dois
programas, a0 mesmo tempo em que se verifica um ligeiro aumento no tempo de cilculo de cp_2.

Nao se podem emitir conclusdes sobre a qualidade das performances dos sistemas, mesmo
que se possa verificar que os pélos de cp_2 sdo mais préximos aqueles de fg e fg,. Verificando as

simulagdes anteriores, nota-se que os resultados de c¢p_2 sdo geralmente mais precisos e confidveis.
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Programa | Tempo Pdlos Natureza
fl cp_2 8.75 1.000000; 5.000000; 5.002273; 5.999986
Proj2D 473.68 [0.999999, 1.000000]x[0, 1.532455E-11] Ambiguo
2 cp 2 8.51 1.000000; 5.002273; 5.999986
Proj2D 13.44 [0.999999, 1.000000]x[0,0] Ambiguo
[5.00224095480, 5.00224095485]x[0,2.913511E-11]
[5.999755, 6.005859]x[0,0.005346]
3 cp 2 8.99 1.000000; 5.002273; 5.999986; 1.500000e+001
Proj2D 262.87 [0.999999,1.000000]x[0,0] Ambiguo
[4.965209, 6.079102]x[0, 0.079346]
[14.996983, 15.008545]x[0, 0.003052]
4 cp 2 8.35 1.000000; 3.000000; 5.002273; 5.999986
Proj2D 871.38 [0.999048, 1.000562]x[0, 0.000781] Ambiguo
[2.993310, 3.006934]x[0, 0.007032]
[4.987573, 5.017090]x[0, 0.015625]
[5.991894, 6.008545]x[0, 0.008594]
5 cp_2 9.09 5.002273; 5.999986; 1.500000e+002; 2.00000e+004
Proj2D 28.85 [5.001362, 5.003261]x[0, 0] Ambiguo
f6 cp_2 6.86 5.002283; 5.999965
Proj2D 0.312 [5.00224105610,5.00224105612]x[0,3.73E-12] Ambiguo
[5.99999385062,5.99999385063]x[0,4.32E-12]
f7 cp 2 6.52 1.000000; 5.002283; 5.999965
Proj2D 4.56 [0.999999,1.000000]x[0,0] Ambiguo
[5.0022410560,5.0022410561]x[0,2.88E-11]
[5.999366,6.000354]x[0,0.000976]
8 cp 2 6.80 1.000000; 5.002283; 5.999965; 1.500000e+001
Proj2D 143.30 [0.999999, 1.000000]x[0, 3.004E-12] Ambiguo
[4.90625, 5.125]x[0, 0.15625]
[5.8671875, 6.117187]x[0, 0.1875]
[14.992187, 15.007812]x[0, 0.007812]
9 cp_2 6.28 1.000000; 5.000000; 5.002283; 5.999965
Proj2D 1814.30 | [0.999260, 1.003461]x[0, 0] Ambiguo
[4.121093, 6.425781]x[0, 1.425781]
fl10 | cp 2 7.02 5.000000; 5.002283; 5.999965
Proj2D 3150.44 | [4,983642, 5.018798]x[0, 0.031494] Ambiguo
[5.999511, 6.000244]x[0, 0.000732]
fl1 cp 2 6.89 3; 5.002283; 5.999965; 20; 150
Proj2D 465.94 [2.982146, 3.017397]x[0, 0.019531] Ambiguo
[4.808095, 5.259295]x[0, 0.449219]
[5.724594, 6.253344]x[0, 0.46875]
fl2 | cp 2 6.57 5.002283; 5.999965; 2.000000e+003
Proj2D 0.52 X -
fl13 | cp 2 22.48 5.002246; 5.999984
Proj2D 0.83 [0.046431,0.053062]x[0.234587, 0.251133] Ambiguo
fl4 |cp 2 8.46 34+2i;3-2i;5.002273 ; 5.999986
Proj2D 948.63 [2.802734, 3.199219]x[1.748046, 2.197266] Ambiguo

[4.525390, 6.234375]x[0, 0.888672]

Tabela C.1: Comparacao dos resultados de cp_2 e Proj2D.
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A simulacdo com f)4 foi feita para se analisar o desempenho dos programas para se encontrar
polos complexos. Os dois programas encontraram os polos procurados, entretanto Proj2D
apresentou um tempo maior de cdlculo e grandes intervalos.

Apresenta-se, na figura C.1, a interface inicial, onde se definem as restri¢des, o valor de € e
as varidveis, para f|. Apresenta-se, também, o resultado da simulacdo com a determinacio
progressiva dos intervalos, para fi4, na figura C.2.

Numerosos testes foram feitos para sistemas com infinitas raizes. Para a funcfo fjs por
exemplo, testou-se em cp_2 e verificaram-se, gracas a literatura, que o caso apresenta infinitas
raizes instaveis. Desse modo, o programa explica, através de uma mensagem de erro, e é

reinicializado.

f15:_52+sz*e_s (C.17

Para Proj2D, entretanto, utilizou-se € = 0.01 ¢com um intervalo inicial de [0, 100] x [0, 100],
chegando apdés 0.21s as raizes mostradas na tabela C.2, a qual contém, também, as raizes
calculadas, de acordo com os métodos da literatura.

Essas raizes foram comparadas aos valores propostos na literatura e constituem boas
aproximacdes para as raizes de alto valor absoluto. Verifica-se, entdo, uma superioridade de Proj2D
no caso de infinitas raizes, pois € possivel calcular, com uma precisdo relativa, certo nimero do
conjunto de infinitas raizes instaveis.

Isso foi possivel antes por cp_2. Notou-se uma perda do carater assintdtico da aproximagio
Padé-2 durante a aproximacdo do sistema com infinitas raizes instdveis, como se vé pela figura C.3.

Mostra-se, na figura C.4, o grafico, manipulado em Excel para a retirada de raizes que nédo
obedecem ao cardter assintdtico, as infinitas raizes calculadas da funcfo f;s, antes da modificacio
do programa.

A localizacdo das infinitas raizes instdveis foi estudada com o programa aqui produzido, mas
isto foi excluido do programa, porque se quer respeitar a validade dos resultados fornecidos (veja

secdo 7.1).
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- Proj2D - C:\Documents and Settings\Mariana\Bureau\Proj2d\3.pb

File Ewecute Tools Help

[._.\-: @@ nH © & A Hesults.txt

Infos. ket

Conshraints Varables
Q00+E*"4-36% 2% 246%™ 4-{1 02-6*exp (-2  cos(2%y) + 2*axpi=d*cos () * " 3-F xin [0,10]
2% IHy-2 4y A (B e (-2 *sin{ 2%+ 2 exp =t sin () O 3T 2+ (F1 02+ B r in[0.1]
4 2

Projected Yariables Epsilon
L 0.m

Position of cursor : {133386.6133866134,-395. 186335737439) Computing Time : 593, 2665

Figura C.1: Determinagdo dos parametros da simulacdo em Proj2D para f;.

Figura C.2: Resultados da simulagdo de f;4 em Proj2D.

47



Proj2D

Literatura

[0.000990,0.000991]x[50.245548,50.245570]

0,000989 + 50,245588i

[0.000782,0.000783]x[56.530953,56.530974]

0,000781 + 56,530983i

[0.000633,0.000634]x[62.815912,62.815933]

0,000633 + 62,815937i

[0.000523,0.000524]x[69.100548,69.100569]

0,000523 + 69,100569i

[0.000439,0.000440]x[75.384942,75.384962]

0,000439 + 75,384960i

[0.000374,0.000375]x[81.669149,81.669169]

0,000374 + 81,669166i

[0.000323,0.000323]x[87.953209,87.953230]

0,000323 + 87,953226i

[0.000281,0.000281]x[94.237154,94.237174]

0,000281 + 94,237169i

[0.003980,0.003981]x[25.092710,25.092731]

0,003957 + 25,092952i

[0.002542,0.002542]x[31.383966,31.383987]

0,002533 + 31,38409i

[0.001763,0.001763]x[37.672507,37.672527]

0,001759 + 37,672586i

[0.001294,0.001295]x[43.959507,43.959527]

0,001292 + 43,959561i

[0.007110,0.007111]x[18.795943,18.795964]

0,007036 + 18,796504i

[0.016218,0.016220]x[12.484914,12.484935]

0,015831 + 12,486793i

[0.070521,0.070527]x[6.1086384,6.1086641]

0,063326 + 6,124030i

[0.775195,0.78125]x[1.395545,1.400976]

NaN — Infinito

Tabela C.2: Raizes de f;5 por Proj2D.
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Figura C.3: Localizacdo das infinitas raizes instaveis.
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Figura C.4: Gréfico das infinitas raizes de fjs.
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Anexo D: Rotina em Maple para a comparacao com Proj2D

As rotinas abaixo foram criadas para gerar de modo quase automatico as entradas dos
programas cp_2 e Proj2D. As rotinas em Maple foram utilizadas, gracgas a facilidade de aplicagdo e
a riqueza na gestao das varidveis simbolicas.

Apresentam-se, aqui, as rotinas para a fun¢do f; (C.3), uma vez que se aplica a mesma rotina
para as outras funcdes. A fim de se produzir as entradas para o programa Proj2D, utiliza-se a rotina

1_fct.mw dada abaixo.

G = (s=1)*(s=5)*(6*s"2+(6*exp(-2*s)—-2*exp(—-s)—-66) *s-2*%exp(-3*s))
G := collect(evala(Expand(G)), s)

G := evalc(subs(s = x+I*y, G))

Gre := convert(evalc(Re(G)), string)

Gim := convert (evalc(Im(G)), string)

Esses comandos geram as entradas, no campo ‘“Restricdes”’, do programa Proj2D,
respectivamente Gre e Gim, igualadas a zero. A fim de se produzir as entradas para o programa

cp_2, utiliza-se a rotina I_fct_matlab.mw, dada pelos comandos abaixo.

G : (5=1)*(s=5)*(6*s"2+ (6*exp(-2*s)-2%*exp(—-s)—-66) *s—2*exp(-3*s))
G := Expand(G)

G := evala(G)

G := collect (G, exp(-s))

G := collect (G, exp(-2*s))

G := collect (G, exp(-3*s))

G := convert (G, string)

Chega-se, entdo, a fungdo G, onde se encontra a divisdo dos polindmios para cada atraso.

Esses polindmios sdo as entradas do programa cp_2.
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Anexo E: Resolu¢ao formal de uma equacio de terceiro grau para a analise da

estabilizacdo de um sistema com atraso

s’ +bs+c

A questdo € saber se um controlador do tipo C(s) =—;
as” + fPs+y

pode estabilizar (ao senso

—sT
. . e
H _) um sistema com atrasos do tipo P(s) =

,paratodo T 20.

Busca-se, dessa forma, que (I +PC)", P(I+PC)" e C(I+PC)" sejam em H_. O
denominador da malha fechada é do tipo F (s,7)=A(s)+ C(s)exp(— sT), onde deg(A) > deg(C).

As técnicas de Walton e Marshall (se¢do 6.1.2) foram utilizadas para se determinar os valores do

atraso que desestabilizam o sistema e que, entdo, eventualmente, o re-estabilize.

—sT

2
S tbstc capaz de estabilizar P(s) =~

Comegou-se a estudar o controlador C(s) =—
as”+fBs+y s—0

Analisando F(s,0), chega-se a um polinémio parametrizado de grau 3 (com 5 pardmetros). Deve-se

verificar a auséncia de raizes instdveis para 7 =0, o que foi feito pelo critério de estabilidade de
Routh-Hurwitz. O método de Walton e Marshall pede que se verifique se existem valores de
parametros tais que um polindmio parametrizado de grau 3 ndo tenha nenhuma raiz real positiva.
Tentou-se utilizar o método de Cardan para 7 > 0.

Chegou-se a um sistema nao linear de equagdes parametrizadas, dificil de ser resolvido a
mao ou com Maple. Essa parte do trabalho foi abandonada, por nio se configurar como integrante

do escopo inicial deste trabalho, mas como uma possivel extensdo do mesmo.
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